doi:10.11887/j.cn.201906023

http://journal. nudt. edu. cn

利用过阻尼电路合成高压方波脉冲*

赵 越^{1,2},蒋吉昊¹,周良骥¹,陈 林¹,王 勐¹,李 逢¹,康军军¹,王 治¹ (1. 中国工程物理研究院 流体物理研究所 脉冲功率科学与技术重点实验室,四川 绵阳 621999; 2. 中国科学技术大学 物理学院,安徽 合肥 230026)

摘 要:在过阻尼 RLC 电路分时放电的基础上,提出新型高压方波脉冲产生方法。理论分析表明:过阻 尼 RLC 电路产生的双指数电压波与脉冲形成线产生的方形电压波具有类似的上升沿和平顶。电路模拟表 明:通过人工过零技术可以对双指数电压波进行截尾,从而形成完整的高压方波脉冲。建立了原理验证性样 机,由两组 RLC 电路构成,每组电路包含一台脉冲电容器和一只三电极场畸变气体开关,两组电路共用一个 上升沿调节电感。实验证明:样机可以在电阻负载上输出幅值为 17 kV、平顶宽度为 330 ns ~5.8 μs、上升沿 为 100 ~ 350 ns 的单极性高压方波脉冲。该方法适应性强,对负载变化不敏感,同时具有良好的可调节性,方 波上升沿、平顶宽度连续独立可调。

Using over-damped electric circuits to synthesize high voltage rectangular pulse

ZHAO Yue^{1,2}, JIANG Jihao¹, ZHOU Liangji¹, CHEN Lin¹, WANG Meng¹, LI Feng¹, KANG Junjun¹, WANG Zhi¹ (1. Key Laboratory of Pulsed Power, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China;

2. School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China)

Abstract: Based on over-damped RLC nonsynchronous discharge circuits, a novel high voltage rectangular waveform forming method was proposed. The theoretical analysis showed that the double exponential waveform approaches the rising edge and the flattop of rectangular waveform in a particular situation. Meanwhile the numerical simulation showed the tail of double exponential waveform can be cut off by the artificial current zero. A prototype was designed and tested. The results showed that the prototype can output an adjustable unipolar rectangular pulse with 17 kV amplitude, 330 ns ~ 5.8 μ s flattop duration and 110 ~ 350 ns rising time on insulation specimen. The rising time, the positive flattop duration and the negative one of rectangular pulse are adjustable independently. The waveform is not sensitive to specimen variety.

Keywords: adjustable; high voltage rectangular pulse; RLC circuit; over-damped; artificial current zero; insulation test

高压方波脉冲具有较快的上升沿、平坦的顶部和较快的下降沿,广泛应用于多个领域。高压 方波脉冲被应用于食品的非热灭菌,效果优于正 弦波和双指数波^[1]。脉冲宽度调制(Pulse Width Modulation, PWM)技术通过产生占空比可调的方 波脉冲来实现无刷电机的调速^[2]。在脉冲功率 领域,方波通常被用来驱动 X-ray 二极管,快前沿 和平坦顶部有利于控制焦斑直径和增加辐射剂 量^[3]。高电压方波作用下材料的绝缘特性不同 于正弦波和双指数波^[4]。因此为了解材料的绝 缘特性,有必要对材料进行实验测试。用于材料 绝缘特性测试的方波产生方法较多。李亚维^[5] 等利用脉冲形成网络(Pulse Forming Network, PFN)和脉冲变压器设计一台输出电压为 80 kV 的可调高压方波脉冲电源。文献[6]设计了一种 PFN型 Marx 发生器,能够输出幅值为 100 kV、脉 宽为 173 ns、上升沿为 15 ns 的高压方波脉冲。 Mazarakis 等基于 Fourier 级数理论设计了方波直 线变压器驱动源(Linear Transformer Driver, LTD),可以产生 MV 量级的高压方波脉冲^[7]。原 则上,上述高压方波产生方法都可以用于材料的 绝缘特性实验,但考虑到材料样品的介电常数、厚 度、面积等参数变化很大,一般情况下,需要针对 某种样品设计专用的高压方波脉冲发生器。本文 提出利用过阻尼 RLC 电路分时放电合成高压方 波脉冲的新方法,该方法具有优良的可调节性,适 合材料的绝缘特性测试。

1 理论分析

基于脉冲形成线(Pulse Forming Line, PFL) 的脉冲形成电路如图 1 所示, PFL 通常被用来产 生方波脉冲。直流高压电源 V_{de} 经隔离电阻 R_{iso} 将 脉冲形成线 T 充电至 $U_0 \circ Z$ 和 t_1 表示 T 的阻抗 和单程渡越时间。开关 S 闭合后, T 经电感 L 对 电阻 R 放电形成高压方波脉冲 $U_R \circ$

图 1 基于 PFL 的脉冲形成电路 Fig. 1 Rectangular pulse circuit based on PFL

$$U_{R} 可表述为:$$

$$U_{R}(t) = \frac{U_{0} \cdot R}{Z + R} \cdot \left\{ 1 - \exp\left[-\left(\frac{Z + R}{L}\right) \cdot t \right] \right\},$$

$$2t_{1} > t > 0$$
(1)

RLC 电路如图 2 所示,其中, C_0 为电容,初始 电压为 U_{c_0} , L_0 为电感, R_0 为电阻。当 $R_0 > 2(L_0/C_0)^{1/2}$ 时,电路处于过阻尼状态。

电阻电压为:

$$U_{R_{0}}(t) = I_{R_{0}}(t)R$$

$$= \frac{U_{C_{0}}R[\exp(p_{1}t) - \exp(p_{2}t)]}{(p_{2} - p_{1})L_{0}} \qquad (2)$$

式中,

$$p_{1} = -\left(\frac{R_{0}}{2L_{0}}\right) + \sqrt{\left(\frac{R_{0}}{2L_{0}}\right)^{2} - \left(\frac{1}{\sqrt{L_{0}C_{0}}}\right)^{2}} \quad (3)$$
$$p_{2} = -\left(\frac{R_{0}}{2L_{0}}\right) - \sqrt{\left(\frac{R_{0}}{2L_{0}}\right)^{2} - \left(\frac{1}{\sqrt{L_{0}C_{0}}}\right)^{2}} \quad (4)$$

$$U_{R_0}(t) = \frac{U_{C_0} \cdot R}{(p_1 - p_2) \cdot L_0} \cdot \exp(p_1 \cdot t) \cdot \{1 - \exp[-(p_1 - p_2) \cdot t]\}$$
(5)

将式 (3)代入表达式 exp(
$$p_1 \cdot t$$
),可得:
exp($p_1 \cdot t$) = exp $\left\{\frac{R_0}{2L_0}\left[\left(1 - \frac{4L_0}{R_0^2 C_0}\right)^{\frac{1}{2}} - 1\right] \cdot t\right\}$ (6)

 $R_0^2 C_0 \gg 4L_0 \tag{7}$

当式(7)成立时,式(6)被简化为 exp(p₁・ t)≈1。进一步,式(5)可写为:

$$U_{R_{0}}(t) \approx \frac{U_{C_{0}} \cdot R}{(p_{1} - p_{2}) \cdot L_{0}} \cdot \{1 - \exp[-(p_{1} - p_{2}) \cdot t]\}$$
(8)

对比式(1)和式(8)可知,当式(7)得到满足 时,式(1)和式(8)是一致的。

$$(p_1 - p_2)L_0 = 2\sqrt{\left(\frac{R_0}{2}\right)^2 - \frac{L_0}{C_0}} = Z + R$$
 (9)

上述分析表明,当式(7)和式(9)得到满足时,RLC电路可以输出与 PFL 输出的方波类似的前沿和平顶。如式(7)得到满足,可认为 RLC电路处于"深度"过阻尼状态。

使用"深度"过阻尼 RLC 电路可以获得类似 方波的上升沿和平顶,还需获得类似方波的下降 沿。设想采用人工过零技术,对过阻尼 RLC 电路 输出的双指数波进行截尾,从而获得类似方波的 下降沿。人工过零技术广泛应用于高压直流断路 器^[8-9]和电感储能脉冲功率系统,通过附加回路 产生反向电流,抵消主电路初始电流,促进气体消 电离,加速开关关断。受人工过零技术启发,设置 两组附加的 RLC 电路,如图 3 所示。基本工作原 理为:第一组开关闭合,负载上形成类似方波的上 升沿和平顶。第二组开关闭合,产生反向电流,反 向电流较第一组电流大,不仅能够抵消第一组电 流,还能形成净反向电流,从而形成反向上升沿和 平顶。第三组开关闭合,产生反向电流(相对第 二组),完全抵消第一组、第二组电流,形成双极 性高压方波脉冲。若要形成单极性方波,则只需 两组 RLC 电路,第二组电流恰好能够抵消第一组 电流即可。

图 3 基于 RLC 电路的双极性方波产生电路 Fig. 3 Bipolar rectangular pulse circuit 采用数值模拟详细阐明上述过程。图 3 中三 组 RLC 电路除初始电压 U_{c_1} 、 U_{c_2} 、 U_{c_3} ,其他参数 完全一致。C、 L_s 和 R_s 分别表示电容、杂散电感和 杂散电阻。 L_t 和 R_{sam} 为上升沿调节电感和采样电 阻。 R_{sp} 、 C_{sp} 和 L_{sp} 为样品等效参数。

采用频域分析法,样品等效阻抗为:

$$Z_{\rm sp} = j\omega L_{\rm sp} + \frac{\frac{R_{\rm sp}}{j\omega C_{\rm sp}}}{R_{\rm sp} + \frac{1}{j\omega C_{\rm sp}}}$$
(10)

通常情况下, R_{sp} 远大于 L_{sp} 和 C_{sp} , 样品等效 阻抗为:

$$R_{0} = \frac{R_{\rm sp}R_{\rm sam}}{R_{\rm sp} + R_{\rm sam}} = \frac{R_{\rm sam}}{1 + \frac{R_{\rm sam}}{R}}$$
(11)

当 R_{sam} 远小于 R_{sp} 时, $R_0 \approx R_{sam}$,这意味着要使输出波形对负载不敏感,需要合理选择取样电阻 R_{sam} 。

使用图 3 电路和表 1 参数进行模拟可得方波 脉冲。图 4 中 Curve 1、Curve 2 为单极性方波脉 冲,只需两组 RLC 电路。Curve 3~5 为双极性方 波脉冲,需使用三组 RLC 电路。无论单极性或双 极性方波脉冲,上升沿都可通过上升沿调节电感 L_t 调节。单极性方波脉宽可由 $\Delta t = t_2 - t_1$ 调节, 双极性方波脉宽独立可调,分别为 $\Delta t_a = t_2 - t_1$ 和 $\Delta t_b = t_3 - t_2$ 。

表 1 模拟参数 Tab 1 Parameters of simulation

	Tab. 1 Transition						
Curves	$t_1/$	$t_2/$	$t_3/$	$U_{c_1}/$	$U_{c_2}/$	$U_{c_3}/$	$L_{\rm t}/$
	μs	μs	μs	kV	kV	kV	μH
1	0	5.8		- 17	+ 17		15
2	0	7.8		- 17	+ 17		45
3	2	5	9	- 17	+ 50	- 34	15
4	2	4	8	- 17	+ 50	- 34	15
5	2	5	7	- 17	+ 50	- 34	15

图 5 为单极性方波(图 4 中的 Curve 1)和双 极性方波(图 4 中的 Curve 3)产生电路中开关电 压的变化。对于单极性方波,第一组开关闭合,第 二组开关电压升至 + 34 kV,约等于第二组、第一 组电容器充电电压之差,即 $\Delta U \approx U_{c_3} - U_{c_1}$ 。对于 双极性方波,第一组开关闭合,第二组开关电压升 至 + 67 kV,约等于第二组、第一组电容器充电电 压之差,即 $\Delta U \approx U_{c_2} - U_{c_1}$;同时,第三组开关电压 降至 - 17 kV,约等于第三组、第一组电容器充电 电压之差,即 $\Delta U \approx U_{c_3} - U_{c_1}$;随后第二组开关导

通,第三组开关电压升至 – 49 kV,约为第三组电容器充电电压与第二个平顶电压之差,即 $\Delta U \approx U_{c_3} - U_{s_9}, U_{s_9}$ 为第二个平顶电压。

图 5 开关电压 Fig. 5 Switch voltages

第二组开关闭合后,第一组看到的阻抗突变 为采样电阻 *R*_{sam}与第二组阻抗形成的并联阻抗, 该阻抗远小于采样电阻。电路将由过阻尼进入欠 阻尼。电流从双指数形过渡为欠阻尼正弦形。虽 然欠阻尼正弦振荡电流并不会影响方波合成,但 会加速开关电极烧蚀并减少电容器寿命。为此, 每组 RLC 电路增加一个 16 Ω 的阻尼电阻,以保 证电路始终处于过阻尼状态。

由文献[10]可知,若临界系数满足:

$$\alpha = \frac{(R+R_{\rm s})}{2\sqrt{\frac{L_{\rm t}+L_{\rm s}}{C}}} > 5 \tag{12}$$

方波的上升沿为:

$$t_{\rm r} \approx 2.2 \, \frac{L_{\rm t} + L_{\rm s}}{R + R_{\rm s}} \tag{13}$$

由此可知,为了减小 t_r ,必须减小 $L_t + L_s$,显然 t_r 的最小值被 L_s 限制。为了描述方波质量,定

义 f 为方波顶降系数。

$$f = \frac{\left[I_{1\max} - I_{1}(t_{2} - t_{1})\right]}{I_{1\max}}$$
(14)

式中,I_{1max}为第一支路的峰值电流。

2 实验及结果分析

图 6 所示为原理验证性样机,包含两组 RLC 电路,每组由一台 400 nF 脉冲电容器、一只三电 极场畸变气体开关和一个 16 Ω 水电阻构成。每 组 RLC 电路由高压直流电源独立充电,并由一个 触发器独立触发。两个触发器按设定时序输出触 发脉冲。两组 RLC 电路共用一个 45 μH 空芯螺 线管电感和一个 250 Ω 采样电阻。聚丙烯膜绝 缘材料样品厚 20 μm,面积为 12.6 cm²。

图 6 原理验证性样机示意图

Fig. 6 Schematic diagram of principle verification prototype

由图 5 可知,第二组 RLC 电路开关要承受约 两倍的初始充电电压。

 $U_{\rm b} = 6.72 \sqrt{p \cdot d} + 24.36p \cdot d$ (15) 式中:p 为气压,atm;d 为开关间隙,cm。由式(15)知 其工作气压也应为第一支路开关工作气压的 两倍^[11]。

选取表1中Curve1参数,各组RLC电路未 接入阻尼电阻时的测试结果如图7所示。方波 上升沿为350 ns,峰值电压为16.5 kV,脉宽为 5.8 μs,峰值电流为9.7 kA,电流波形为欠阻尼 振荡形,由式(14)计算可知其方波顶降系数约 为10%。接入16Ω阻尼电阻后再行测试,波形 如图8所示,方波上升沿为345 ns,峰值电压为 16 kV,脉宽为5.8 μs,峰值电流为1.6 kA,方波 顶降系数约为9.7%。由此可知,随着阻尼电阻接 入,方波上升沿几乎没有发生变化,峰值电压降低 了约3%,电流波形由过阻尼振荡形过渡为双指数

形,峰值电流大幅降低,约仅为图7的16.5%。

调整上升沿调节电感 $L_t = 12 \mu H$ 和开关闭合时间 $\Delta t_a = 440 \text{ ns}$,可以有效调整方波的上升沿和 脉宽,实验波形如图 9 所示,上升沿为 100 ns,脉 宽为 330 ns,方波顶降系数小于 1%。

图 8 加入 16 Ω 阻尼电阻后实验波形

图 9 $L_t = 12 \mu H$, $\Delta t_a = 440 \text{ ns}$ 时实验波形

Fig. 9 Test waveform with $L_t = 12 \mu H$ and $\Delta t_a = 440 ns$

3 结论

提出新型的高压方波产生方法。利用过阻尼

RLC电路分时放电合成单(双)极性方波。理论 证明"深度"过阻尼 RLC电路与 PFL电路类似, 可以输出类似方波的上升沿和顶部。电路模拟表 明,通过人工过零技术可以对双指数电压波进行 截尾,从而形成完整的高压方波脉冲。为了对上 述理论分析和电路模拟进行验证,设计了一台原 理验证性样机,由两组 RLC电路构成。波形结果 表明,原理验证样机可以输出幅值为 17 kV、脉宽 为 330 ns ~ 5.8 μs、上升沿为 100 ~ 350 ns 的高压 方波脉冲,具有可调节性好、对负载不敏感、波形 质量较好(方波顶降系数小)等特性,非常适合用 于材料绝缘实验。

参考文献(References)

- [1] Qin B L, Zhang Q H, Barbosa-Canovas G V, et al. Inactivation of microorganisms by pulsed electric fields of different voltage waveforms [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(6): 1047 – 1057.
- [2] Geng X. Design and analysis of pulse-width modulation techniques for spectrum shaping [D]. USA: University of Illinois at Urbana-Champaign, 2007.
- [3] Liu H W, Xie W P, Yuan J Q, et al. Design of compact Marx module with square pulse output [J]. Review of Scientific Instruments, 2016, 87 (7): 1262 - 1267.

- [4] Mashimo T, Yashima M, Okamoto T. Sinusoidal-wave applied voltage frequency dependence of partial discharge characteristics with needle-plane electrode system [C]// Proceedings of International Symposium on Electrical Insulating Materials, 2017: 91-95.
- [5] Li Y W, Ding M J, Ma C G, et al. 80 kV adjustable high voltage rectangle-wave pulsed power supply[J]. High Voltage Laser and Particle Beams, 2013, 25(10): 2742 – 2746.
- [6] Zhang H, Yang J, Lin J, et al. A compact bipolar pulseforming network-Marx generator based on pulse transformers [J]. Review of Scientific Instruments, 2013, 84(11): 1147-1152.
- [7] Mazarakis M G, Stygar W A, Kim A A, et al. Square pulse LTD [C] //Proceedings of International Power Modulator and High Voltage Conference, 2012: 917 – 922.
- [8] Shi Z Q, Zhang Y K, Jia S L, et al. Design and numerical investigation of a HVDC vacuum switch based on artificial current zero [J]. IEEE Transaction on Dielectrics and Electrical Insulation, 2015, 22 (1): 135 – 140.
- Zhang X T, Li Z M, Li H T, et al. A zero-current opening circuit for inductive pulsed-power supply based on high-temperature superconducting pulsed-power transformer [J].
 IEEE Transactions on Plasma Science, 2017, 45 (9): 2536 2540.
- [10] Feng X B, Qian Y, Zhang J H, et al. Development of nanosecond gas spark switch [J]. Journal of Nanjing Agricultural University, 2012, 35(1): 125-129.
- [11] Martin T H, Guenther A H, Kristiansen M J C. Martin on pulsed power [M]. USA: Plenum Press, 1996.