doi:10.11887/j.cn.202202022

http://journal. nudt. edu. cn

# 双球破片冲击柱壳装药的临界起爆条件\*

郭 淳1,郭尚生2,钱建平1,顾文彬1,3

(1. 南京理工大学 机械工程学院, 江苏 南京 210094; 2. 辽沈工业集团有限公司, 辽宁 沈阳 110045;
 3. 陆军工程大学 野战工程学院, 江苏 南京 210007)

摘 要:为了研究导弹战斗部(柱壳装药)在破片场中的累积毁伤问题,在现有单破片起爆平板装药的 Jacobs-Roslund 经验准则的基础上,分别建立了考虑破片尺寸、破片撞击角度、柱壳装药的装药半径和壳体厚 度的单球破片、双球破片冲击柱壳装药临界起爆条件的工程分析模型。该模型计算结果与数值模拟结果和 现有试验结果相吻,证明利用该模型能较准确地预测单球破片、双球破片以任意角度冲击柱壳装药的临界起 爆条件。

关键词:临界起爆条件;柱壳装药;双破片;起爆判据 中图分类号:TJ410 文献标志码:A 文章编号:1001-2486(2022)02-188-07

# Critical initiation condition of cylindrical covered charge by double spherical fragments impact

GUO Chun<sup>1</sup>, GUO Shangsheng<sup>2</sup>, QIAN Jianping<sup>1</sup>, GU Wenbin<sup>1,3</sup>

(1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;

2. Liaoshen Industries Group Co., Ltd., Shenyang 110045, China;

3. Field Engineering Institute, Army Engineering University, Nanjing 210007, China)

Abstract: In order to investigate the shock initiation of missile warhead (cylindrical covered charge) by multiple fragments impact under actual combat conditions, based on Jacobs-Roslund formula of single fragment initiation plane covered charge, the engineering calculation model of the impact critical initiation condition of cylindrical covered charge with single or double spherical fragments were established. The calculation model includes several parameters, such as fragment diameter, impact angle, charge radius and shell thickness. The calculation model results were in good agreement with the simulation results and experimental results, which proves that the calculation model can provide a better prediction of the impact critical initiation condition of cylindrical covered charge with single or double spherical fragments.

Keywords: critical initiation condition; cylindrical covered charge; double fragments; initiation criterion

应用具有一定分布密度的高速破片起爆战斗 部是毁伤导弹最有效的方法之一。悬浮弹幕协同 反导弹药是利用其多个子弹药战斗部协同作用产 生的成百上千个飞散方向任意的高速破片毁伤来 袭导弹、无人机等目标的新型防御性弹药<sup>[1]</sup>。

国外学者们针对破片冲击起爆裸装药或带平 板壳装药的问题已经进行了大量研究,但大多数 均以单破片冲击裸装药或平板装药作为研究对 象,建立了一系列经典的起爆判据,诸如:著名的 非均相炸药起爆判据<sup>[2]</sup>、Held 经验判据<sup>[3]</sup>、炸药 的临界起爆能量判据<sup>[4]</sup>、Jacobs-Roslund 经验准 则<sup>[5]</sup>、Rindner 经验准则<sup>[6]</sup>及 Picatinny 兵工厂冲 击引爆解析计算式<sup>[7]</sup>等。国内学者对以上经典 判据也进行了相关修正,方青等<sup>[8]</sup>基于 Jacobs-Roslund 经验准则,对斜碰撞问题进行了研究;张 先锋等<sup>[9]</sup>在 Rindner 经验准则及 Held 研究结 论<sup>[10]</sup>基础上,建立了射弹冲击起爆带壳装药经验 准则;陈卫东等<sup>[11]</sup>推导了不同材质破片冲击起爆 屏蔽装药的理论判据。也有少数学者针对多破片 冲击裸装药的起爆判据进行了研究:李文彬等<sup>[12]</sup> 提出了两破片冲击起爆裸装药的判据;梁斌等<sup>[13]</sup> 基于贾宪振等<sup>[14]</sup>的双破片同时冲击起爆平板装 药的规律性研究,通过数值模拟得出了多破片同 时和非同时冲击起爆平板装药临界速度的变化规 律。而实战环境中导弹战斗部多为柱壳装药,Xu 等<sup>[15]</sup>采用量纲分析与试验结合的方法,得到单一

• 189 •

小质量破片冲击起爆铝柱壳装药的比动能判据; 江增荣<sup>[16]</sup>和王辉<sup>[17]</sup>等进行了不同尺寸单破片冲 击起爆柱壳装药的试验研究;王昕等<sup>[18]</sup>在单破片 起爆平板装药的 Picatinny 判据的基础上,通过纯 数值模拟并对结果进行拟合的方法,考虑破片撞 击角和装药半径的影响,提出了单破片冲击起爆 柱壳装药的修正判据。

可以看出,现有公开发表的文献关于多破 片对柱壳装药的起爆判据鲜有研究,所以本文 将重点研究双球破片起爆柱壳装药的临界条 件。本文在 Jacobs-Roslund 经验准则的基础上 进行推导,提出考虑破片尺寸、破片撞击角度、 柱壳装药的装药半径和壳体厚度的单球破片冲 击柱壳装药的临界起爆条件,进而结合 BoxLucas 1 指数函数模型提出双球破片同时冲 击柱壳装药临界起爆条件的工程分析模型,并 与现有的试验和数值模拟得到的结果进行对 比,验证判据的准确性和普适性。

### 1 临界起爆条件的建立

单破片起爆平板装药的 Jacobs-Roslund 经验 准则<sup>[8]</sup>如式(1)所示。

$$v'd^{\frac{1}{2}} = (1+k)\left(A_1 + \frac{B_1H}{d\cos\theta}\right) \tag{1}$$

其中:v'为单破片冲击起爆平板装药的临界速度 (km/s); $\theta$ 为破片飞行方向与平板法线方向的夹 角(°),;H 为平板厚度(mm), 而  $H/\cos\theta$  表示平 板在破片速度方向的厚度;d 为破片直径(mm);k为尖头系数, 与破片形状有关; $A_1$  为装药敏感系 数, 与装药和破片材料有关; $B_1$  为壳体保护系数,  $A_1$ 、 $B_1$  的值可由试验或数值仿真拟合得到。

由于柱壳装药的装药半径的存在,柱壳装药 与平板装药的差异表现在破片速度方向上的壳体 厚度的不同,不能再简单地采用 H/cos 表示。下 面对 Jacobs-Roslund 经验准则进行推导,建立更 适合柱壳装药的临界起爆条件。本文提出如下 假设:

 1)只考虑球形破片起爆柱壳装药的情况,选 用两个直径均为 d 且同材质的球形破片进行 研究;

2) 柱壳和球破片材料分别选用钢和钨合金, 装药选用 B 炸药,忽略其材质变化引起的柱壳装 药起爆差异;

3) 球破片作用下柱壳装药的敏感系数 A、壳体保护系数 B 在柱壳装药材料固定的条件下视为定值,不随柱壳装药的结构变化而改变;

4)不考虑球破片跳飞的情况;

5) 球破片与柱壳装药作用过程中,忽略装药 绕轴线的转动。

图1为双钨球破片同时撞击柱壳装药的示意,图中l为双球破片平行于装药轴线的球心距离,即轴向球心距。图2为过其中任意一个球破 片碰撞点且垂直于装药轴线的截面示意, $z_i$ 轴垂 直于截面,其中i=1,2。装药半径为R,柱壳厚为  $H_i$ ,钨球直径为d。由于柱壳装药的对称性,双球 破片撞击位置可视为半圆柱的同一侧,即只考虑  $y_i$ 为正的情况。钨球速度 $v_i$ 与平面 $x_io_{i0}y_i$ 的夹 角为 $\gamma_i$ ,当 $v_i$ 平行于 $z_i$ 轴的速度分量方向为 $z_i$ 轴 正方向时, $\gamma_i$ 取正,否则为负。 $v'_i$ 是 $v_i$ 在平面  $x_io_{i0}y_i$ 上的投影速度, $v'_i$ 与壳体、装药的交点分别 为 $E_i$ 、 $F_i$ ,撞击瞬间破片球心 $O_i$ 和装药截面圆心  $o_{i0}$ 的连线 $o_{i0}O_i$ 与 $v'_i$ 的夹角为 $\theta_i$ , $v'_i$ 处于 $o_{i0}O_i$ 绕  $O_i$ 逆时针方向时, $\theta_i$ 取正; $v'_i$ 处于顺时针方向时,



图 1 双钨球撞击示意 Fig. 1 Schematic diagram of impacting by double tungsten fragments



图 2 截面位置示意 Fig. 2 Schematic diagram of cross section

 $\theta_i$ 取负。 $o_{i0}O_i$ 与 $y_i$ 轴的夹角为 $\delta_i$ , $y_i$ 正轴处于  $o_{i0}O_i$ 绕 $o_{i0}$ 逆时针方向时, $\delta_i$ 取正; $y_i$ 正轴处于顺 时针方向时, $\delta_i$ 取负。 $v'_i$ 与 $E_io_{i0}$ 的夹角为 $\alpha_i$ , $\theta_i$ 取正时 $\alpha_i$ 取正, $\theta_i$ 取负时 $\alpha_i$ 取负。 $v'_i$ 与 $F_io_{i0}$ 夹 角的补角为 $\beta_i$ , $\theta_i$ 取正时 $\beta_i$ 取正, $\theta_i$ 取负时 $\beta_i$ 取 负。本文角的大小均采用角度制(°)表示。

在平面  $x_i o_{i0} y_i$  上,由三角形余弦定理可得壳 体在  $v'_i$  方向上的厚度  $\Delta H'_{ii}$ (即  $E_i F_i$ )可表示为:  $\Delta H'_{ii} = [(R + H_i)^2 + R^2 + 2R(R + H_i)\cos(\alpha_i + \beta_i)]^{\frac{1}{2}}$ (2)

式中, $\alpha_i$ , $\beta_i$ 还可由三角形正弦定理表示:

$$\begin{cases} \frac{R}{\sin\alpha_i} = \frac{R + H_t}{\sin\beta_i} \\ \frac{R}{\sin\theta_i} = \frac{R + H_t + d/2}{\sin\beta_i}, \ 0 \le |\theta_i| \le \arcsin\frac{R}{R + H_t + d/2} \end{cases}$$
(3)

壳体在球破片速度  $v_i$  方向的厚度  $\Delta H_{ui}(mm)$  为:

$$\Delta H_{ii} = \frac{\Delta H'_{ii}}{\cos \gamma_i} \tag{4}$$

因此,单球破片冲击柱壳装药的临界起爆条 件可表示为:

$$v_i = Ad^{-\frac{1}{2}} + B\frac{\Delta H_{ii}}{d^{\frac{3}{2}}}$$
(5)

式中:A 为球形破片作用下装药敏感系数;B 为球 形破片作用下壳体保护系数;v<sub>i</sub>为单球破片冲击 柱壳装药的临界起爆速度(km/s)。

在单球破片冲击柱壳装药的临界起爆条件的 基础上,建立双球破片冲击柱壳装药临界起爆条 件的工程分析模型。

设 $v_{e1}$ 、 $v_{e2}$ 分别为双钨球破片同时撞击柱壳装 药的临界起爆速度; $\Delta H_{u}$ 、 $\Delta H_{u}$ 分别为壳体在钨球 1、2速度方向上的厚度;s为 $F_{1}F_{2}$ ,即两个球破片速 度方向与装药表面交点的空间距离,s可表示为:

$$s = \left\{ 2R^2 - 2R^2 \cos\left[\delta_1 + \frac{\theta_1}{|\theta_1|} \cdot (\pi - |\theta_1| - |\beta_1|) - \delta_2 - \frac{\theta_2}{|\theta_2|} \cdot (\pi - |\theta_2| - |\beta_2|) \right] + (|\Delta H_{11} \cdot \sin\gamma_1 - \Delta H_{12} \cdot \sin\gamma_2| + l)^2 \right\}^{\frac{1}{2}}$$
(6)

由多破片垂直撞击平板装药的研究可以得 到<sup>[13-14]</sup>,多破片在壳体表面撞击点间距离在一定 范围内,撞击产生的多道冲击波叠加作用明显,即 对平板装药的累积毁伤作用明显,临界起爆速度 小于单破片作用的情况;而超出此范围,临界起爆 速度等于单破片作用的情况,此时多破片已经没 有累积毁伤效果。由双球破片同时垂直撞击平板 装药的临界起爆速度随球心距的增长曲线变化规 律<sup>[14]</sup>可以看出,双球破片冲击起爆平板装药的临 界速度随球心距的增大而增大,当双球紧靠时取 最小值,且最终趋近于单个破片作用的临界起爆 速度,此变化规律比较符合 BoxLucas 1 指数函数 模型。采用 BoxLucas 1 模型,并结合式(5)来表 示双球破片对柱壳装药的临界起爆条件,如 式(7)所示:

$$v_{c1} + v_{c2} = 2Ad^{-\frac{1}{2}}(1 - e^{-\frac{s}{d}}) + \frac{B(\Delta H_{11} + \Delta H_{12})}{d^{\frac{3}{2}}}$$
(7)  
当  $v_{c1} = v_{c2} = v_c$  时,式(7)可简化为:

$$v_{\rm c} = Ad^{-\frac{1}{2}} (1 - {\rm e}^{-\frac{s}{d}}) + \frac{B(\Delta H_{\rm t1} + \Delta H_{\rm t2})}{2d^{\frac{3}{2}}}$$
(8)

式(8)即为双球破片同时同速冲击柱壳装药的临 界起爆条件。

式(7)与式(8)可以为3、4个甚至更多个球 破片累积毁伤柱壳装药的研究提供参考。通过试 验或数值模拟得到不同材质球破片、柱壳和装药 的A与B,式(5)、式(7)、式(8)就可扩展到任意 材质球破片冲击起爆不同柱壳装药的临界条件。

### 2 数值模拟模型

采用 AUTODYN - 3D 数值模拟软件,分别建 立单钨球破片和双钨球冲击起爆钢柱壳装 B 炸 药的模型(如图 3(a)、3(b)所示),均采用 Lagrange 网格,在 AUTODYN 材料库<sup>[19]</sup>选取全部 材料参数。壳体和装药的网格数量分别为 57 600、384 000,单钨球网格数量为4 096。

B 炸药的状态方程选用 Lee-Tarver 炸药点火 和增长模型:

$$\frac{\partial F}{\partial t} = I(1-F)^{b} \left(\frac{\rho}{\rho_{0}} - 1 - a\right)^{x} +$$

 $G_1(1-F)^{e}F^{f}p^{y} + G_2(1-F)^{e}F^{g}p^{z}$ (9) 式中:F 为炸药气体质量与炸药总质量的比值; $\rho$ 、



(a) 单钨球冲击模型(a) Single tungsten spherical fragment impacting model



(b) 双钨球冲击模型

(b) Double tungsten spherical fragments impacting model

图 3 钨球撞击钢柱壳装药的有限元模型

Fig. 3 Finite element model of tungsten fragments impacting on cylindrical charge with steel casing

 $\rho_0$ 分别为炸药当前密度、初始密度; p为炸药爆轰 压力; I、b、a、x、 $G_1$ 、c、f、y、 $G_2$ 、e、g和 z均为常数, 具体参数详见表1。

表1 B 炸药材料参数

| Tab. 1 Material parameters of composition B |        |       |   |       |       |  |  |  |  |
|---------------------------------------------|--------|-------|---|-------|-------|--|--|--|--|
| <i>I</i> /μs <sup>-1</sup>                  | b      | a     | x | $G_1$ | с     |  |  |  |  |
| 44                                          | 0. 222 | 0.01  | 4 | 414   | 0.222 |  |  |  |  |
| f                                           | у      | $G_2$ | e | g     | z     |  |  |  |  |
| 0.667                                       | 2.0    | 0     | 0 | 0     | 0     |  |  |  |  |

球破片和柱壳的材料状态方程、强度模型和 侵蚀算法见表2。

表2 破片、壳体材料模型

| Tab. 2 | Material | model | of | fragment | and | casing |
|--------|----------|-------|----|----------|-----|--------|
|--------|----------|-------|----|----------|-----|--------|

| 部件 | 材料      | 状态方程   | 强度模型             | 侵蚀算法                |
|----|---------|--------|------------------|---------------------|
| 破片 | 钨合金     | Shock  | Johnson-<br>Cook | Geometric<br>Strain |
| 壳体 | 4340合金钢 | Linear | Johnson-<br>Cook | Geometric<br>Strain |

数值模拟以 10 m/s 为步长,通过"升 - 降 法",分别计算单钨球破片、双钨球破片冲击柱壳 装药的临界起爆速度。

## 3 数值模拟结果与判据校验

通过数值模拟拟合得到本文选取材料的 *A* = 5.42、*B* = 2.68,在此基础上进行单钨球和双钨球起爆柱壳装药的研究。

#### 3.1 单钨球冲击起爆柱壳装药

作为基础先进行单钨球以不同姿态撞击柱壳

装药的临界起爆条件的数值模拟。当d=7 mm、  $H_1 = 6 \text{ mm}_{\gamma_1} = 0^\circ$ ,装药半径 R 分别为 40 mm、 60 mm、75 mm、100 mm, 且 $\theta_1 = \delta_1$ 分别为 $0^{\circ}$ 、15°、 30°、45°、55°时,得到单钨球的临界起爆速度。由 数值模拟结果知道,当R=40 mm、 $\theta_1 \ge 55^{\circ}$ 时,钨 球撞击柱壳时发生跳飞,不在本文研究范围内。 将不同装药半径的柱壳装药在不同 θ1 作用下的 临界起爆速度转化为临界起爆速度  $v_1 与 \Delta H_1/d$ 的关系,并与式(5)对比,如图4所示。式(5)计 算结果与数值模拟结果的最大误差为4%,说明 式(5)可以很好地预测单钨球以任意姿态撞击 不同装药半径的临界起爆速度。而当 $\theta_1 = \delta_1 =$ 0°时,数值模拟得到的临界起爆速度随 R 的变 化小于 0.7%,故可认为钨球以此种姿态撞击柱 壳装药时,装药半径对临界起爆速度的影响 很小。



图 4 临界起爆速度 v<sub>1</sub> 随 ΔH<sub>u</sub>/d 变化的数值 模拟结果与理论计算的对比

Fig. 4 Critical velocity  $v_1$  versus  $\Delta H_1/d$  between simulation and analytical results

将现有的试验结果与式(5)的计算结果相对 比:当  $d = 7.6 \text{ mm}, H_1 = 6 \text{ mm}, \theta_1 = \delta_1 = 0^\circ$ 时, 式(5)得到临界起爆速度为 2.73 km/s,文献[16] 的试验值为 2.676 km/s,误差为 2.02%;当 d =7 mm,  $H_1 = 3 \text{ mm}, \theta_1 = \delta_1 = 0^\circ$ 时,式(5)得到临界 起爆速度为 2.48 km/s,文献[17]的试验值为 2.463 km/s,误差为 0.69%。由此可以看出, 式(5)能较好地预估单钨球冲击钢柱壳装 B 炸药 的临界起爆条件。

把单钨球冲击起爆柱壳装药作为研究双钨球 起爆柱壳装药的基础,可以方便获得对应双钨球 中任意一个撞击位置的单钨球冲击起爆柱壳装药 的临界速度。

#### 3.2 双钨球冲击起爆柱壳装药

由于柱壳装药柱面的存在,研究双钨球撞击

柱壳装药可分为两种情况:一是  $\Delta H_{11} + \Delta H_2$  为定 值时,双钨球同速撞击的临界起爆速度  $v_e$  随 s/d的变化;二是  $\Delta H_{11} + \Delta H_2$ 为变量时,双钨球同速撞 击的临界起爆速度  $v_e$  随 s/d 和  $\Delta H_{11} + \Delta H_2$ 的 变化。

当  $\Delta H_{11} + \Delta H_{12}$  为定值时,取  $d = 7 \text{ mm}_{\chi} H_{1} =$  $6 \text{ mm}_{\gamma_1} = \gamma_2 = 0^{\circ}_{\gamma_1} = \delta_1 = \delta_2 = \delta_2 = 0^{\circ}, 装药半径$ R分别为40 mm、75 mm、100 mm、∞(平板装药), 得到双钨球同速的临界起爆速度随 s/d 的变化和 式(8)曲线的对比如图5所示。由图5可以看出, 此种情况下,柱壳装药的装药半径对临界起爆速度 影响不大,但与平板装药还是略有差异。由数值模 拟结果得到,当s≤3.5d时,柱壳装药相对于同厚 度的平板装药更难以起爆,这是由于此时冲击波 在柱壳装药传播过程的损耗比在平板装药中多。 当 s > 3.5d 时,双钨球对于柱壳装药的临界起爆 速度等于单钨球作用柱壳装药时的情况,而此时 的临界起爆速度并没有达到单个钨球起爆平板装 药的临界速度。随着 s 的继续增加, 双钨球冲击 柱壳装药的临界起爆速度保持持平,而双钨球冲 击平板装药的临界起爆速度则继续增加,最终趋 于单个钨球起爆平板装药的临界速度。所以 >> 3.5d 时,双钨球对柱壳装药已经没有累积毁伤作 用,而双钨球对平板装药依然有累积毁伤作用。 式(8)计算结果与数值模拟结果的最大误差为 2.92%,式(8)可以较好地预测当 ΔH<sub>11</sub> + ΔH<sub>12</sub>为 定值时的双钨球同速撞击柱壳装药的临界起爆 速度,同时也可以预测双钨球撞击平板装药的 情况。





当  $\Delta H_{11} + \Delta H_{12}$  为变量时,取  $d = 7 \text{ mm}, H_1 = 6 \text{ mm}, \theta_1 = \delta_1 = -\theta_2 = -\delta_2$  分别取 5°、10°、15°、 20°,  $\gamma_1 = \gamma_2 = 0^\circ, l = 0,$  装药半径 R 分别为 40 mm、

60 mm、75 mm、100 mm,得到双钨球同速的临界 起爆速度  $v_e$  随 s/d 和( $\Delta H_{11} + \Delta H_{12}$ )/d 的变化与 式(8)曲面的对比如图 6 所示。式(8)计算结果 与数值模拟结果的最大误差为 2.7%,式(8)依然 可以较好地预测双钨球同速撞击的临界速度  $v_e$ 随 s/d 和( $\Delta H_{11} + \Delta H_{12}$ )/d 的变化。



 $(\Delta H_{t1} + \Delta H_{t2})/d$ 的变化关系

Fig. 6 Relation between  $v_c$  with s/d and  $(\Delta H_{11} + \Delta H_{12})/d$ 

为了进一步验证双钨球冲击柱壳装药临界起 爆条件是否具有普适性,开展不同直径钨球破片、 不同壳体厚度、不同撞击角度和双钨球破片异速 时的数值模拟,并与式(7)的计算结果进行比较, 如表 3 所示。通过表中工况 7 和 8 可以看出,在 保证除了速度大小之外撞击条件完全相同的情况 下,v<sub>1</sub>和 v<sub>2</sub> 可以是两个相等的速度,亦可是两个 相差较大的速度,只要保证 v<sub>1</sub> + v<sub>2</sub> 的值接近 式(7)的计算结果就可满足柱壳装药临界起爆条 件。式(7)的计算结果就可满足柱壳装药临界起爆条 体。式(7)的计算结果可满足柱壳装药临界起爆条 均在 7% 以内,可以认为式(7)具有较好的普适 性,可以适用于计算不同尺寸的双球形破片以任 意撞击角度同速或异速且同时冲击不同尺寸柱壳 装药的临界起爆条件。

#### 4 结论

本文在单破片冲击起爆平板装药临界条件的 基础上,分别建立了更符合实战情况的单球破片 和双球破片冲击柱壳装药临界起爆条件的工程分 析模型,并将该模型计算结果与数值模拟、现有试 验对比,得到以下结论:

1)单球破片冲击柱壳装药临界起爆条件的 工程分析模型计算结果与数值模拟结果对比最大 误差为4%,而该模型的计算结果与现有试验对 比得最大误差为2.02%,表明式(5)可以较好地 预测单球破片以任意角度撞击柱壳装药的临界起 爆条件。 表3 临界起爆速度数值模拟与理论计算的对比

Tab. 3 Comparison of critical initiation velocities between simulation and analytical results

| 工况 | d/   | R⁄ | $H_{\rm t}/$ | l⁄   | $	heta_1$ / | $\delta_1$ | $\gamma_1$ | $\theta_2$ | $\delta_2$ | $\gamma_2/$ | $v_1 + v_2$ | $v_1 + v_2 / (\mathrm{km} \cdot \mathrm{s}^{-1})$ |        |
|----|------|----|--------------|------|-------------|------------|------------|------------|------------|-------------|-------------|---------------------------------------------------|--------|
|    | mm   | mm | mm           | mm   | (°)         | (°)        | (°)        | (°)        | (°)        | (°)         | 式(7)        | 数值模拟                                              | - ε/ % |
| 1  | 7    | 40 | 4            | 10.5 | 0           | 0          | 0          | 0          | 0          | 0           | 4.32        | 2.21 + 2.21                                       | -1.82  |
| 2  | 8.26 | 60 | 6            | 0    | 10          | 10         | 0          | - 10       | - 10       | 0           | 4.95        | 2.54 + 2.54                                       | -2.56  |
| 3  | 9.5  | 40 | 6            | 0    | 5.375       | 5.375      | 0          | -5.375     | -5.375     | 0           | 3.33        | 1.79 + 1.79                                       | -6.98  |
| 4  | 7.7  | 75 | 5            | 15.4 | 0           | 0          | 0          | 0          | 0          | 0           | 4.63        | 2.38 + 2.38                                       | -2.73  |
| 5  | 7    | 40 | 6            | 0    | 30          | 30         | 0          | 45         | 45         | 0           | 5.73        | 2.81 + 2.81                                       | 1.95   |
| 6  | 7    | 40 | 6            | 0    | 0           | 0          | 0          | 15         | 15         | - 30        | 5.42        | 2.61 + 2.61                                       | 3.83   |
| 7  | 7    | 40 | 6            | 7    | 5           | 5          | - 5        | - 5        | -5         | 5           | 5.08        | 2.48 + 2.48                                       | 2.42   |
| 8  | 7    | 40 | 6            | 7    | 5           | 5          | -5         | -5         | -5         | 5           | 5.08        | 2.30 + 2.62                                       | 3.25   |

 2) 双球破片冲击柱壳装药临界起爆条件的 工程分析模型计算结果与数值模拟结果误差小于
 7%,表明式(7)能较好地预测双球破片同时以任 意角度撞击柱壳装药的临界起爆条件。

研究结果可为反导弹药战斗部设计和多破片 对导弹战斗部的累积毁伤研究提供参考。

## 参考文献(References)

- 居仙春. 炮射布阵式悬浮弹幕特性及其协同反导效能研究[D]. 南京:南京理工大学, 2014.
   JU X C. Study on the characteristics and synergistic antimissile effectiveness of the array suspension projectile barrage by artillery delivered [D]. Nanjing: Nanjing University of Science and Technology, 2014. (in Chinese)
- [2] 章冠人,陈大年.凝聚炸药起爆动力学[M].北京:国防 工业出版社,1991.
   ZHANG G R, CHEN D N. Initiation dynamics of condensed explosives[M]. Beijing: National Defense Industry Press, 1991.(in Chinese)
- [3] HELD M. Initiation phenomena with shaped charge jets[C]//Proceedings of the 9th International Symposium on Detonation, 1989: 1416 – 1426.
- [4] JAMES H R. Critical energy criterion for the shock initiation of explosives by projectile impact [ J ]. Propellants, Explosives, Pyrotechnics, 1988, 13(2): 35-41.
- [5] ROSLUND L A. Initiation of warhead fragments I: normal impacts NOLTR 73 - 124 [R]. White Oak: Naval Surface Weapons Center, 1973.
- [6] QUIDOT M, HAMAIDE S, GROUX J, et al. Fragment impact initiation of cast PBXs in relation with shock sensitivity tests [C]// Proceedings of the 10th International Symposium on Detonation. Massachusetts, 1993: 113 – 121.
- [7] LLOYD R. Conventional warhead systems physics and engineering design[M]. Washington: AIAA, Inc., 1998.
- [8] 方青,卫玉章,张克明,等.射弹倾斜撞击带盖板炸药引

发爆轰的条件[J]. 爆炸与冲击, 1997, 17(2): 153-158.

FANG Q, WEI Y Z, ZHANG K M, et al. On the projectile oblique-impact initiation conditions for explosive covered with a plate [J]. Explosion and Shock Waves, 1997, 17(2): 153 – 158. (in Chinese)

- [9] 张先锋,赵有守,陈惠武.射弹冲击引爆带壳炸药临界条件[J].弹道学报,2006,18(4):57-59.
  ZHANG X F, ZHAO Y S, CHEN H W. The critical condition of shelled explosive initiated by projectile [J]. Journal of Ballistics, 2006, 18(4):57-59.(in Chinese)
- [10] HELD M. Initiation criteria of high explosives at different projectile or jet densities [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5): 235-237.
- [11] 陈卫东,张忠,刘家良.破片对屏蔽炸药冲击起爆的数值 模拟和分析[J]. 兵工学报,2009,30(9):1187-1191.
  CHEN W D, ZHANG Z, LIU J L. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments[J]. Acta Armamentarii, 2009, 30(9):1187-1191.(in Chinese)
- [12] 李文彬, 王晓鸣, 赵国志, 等. 多破片命中时炸药的冲击 起爆研究[J].南京理工大学学报(自然科学版), 2004, 28(1):5-8.
  LI W B, WANG X M, ZHAO G Z, et al. Study on shock initiation of explosive by the impact of multi-fragment [J]. Journal of Nanjing University of Science and Technology, 2004, 28(1):5-8. (in Chinese)
- [13] 梁斌,冯高鹏,魏雪婷. 多枚破片冲击引爆带盖板炸药数 值模拟分析[J]. 弹箭与制导学报,2013,33(6):62-66,69.
  LIANG B, FENG G P, WEI X T. Numerical simulation on shock initiation of composition explosive of cover board

shock initiation of composition explosive of cover board subjected to multi-fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(6): 62 - 66, 69. (in Chinese)

[14] 贾宪振, 陈松, 杨建, 等. 双破片同时撞击对 B 炸药冲击

起爆的数值模拟研究[J]. 高压物理学报, 2011, 25(5): 469-474.

JIA X Z, CHEN S, YANG J, et al. Numerical study of explosives initiation by simultaneous impact from two fragments [J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 469 – 474. (in Chinese)

- [15] XU Y X, GAO P, WANG S S. Critical criterion for the shock initiation/ignition of cylindrical charges with thin aluminum shell impacted by steel fragment [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 921-931.
- [16] 江增荣,李向荣,李世才,等. 预制破片对战斗部冲击起 爆数值模拟[J]. 弹道学报,2009,21(1):9-13.
  JIANG Z R, LI X R, LI S C, et al. Numerical simulation on shock initiation of performed fragment to warhead[J]. Journal of Ballistics, 2009, 21(1):9-13. (in Chinese)
- [17] 王辉,胡赛,尹航,等.圆柱薄壳装药破片冲击毁伤实验[J].弹箭与制导学报,2015,35(3):85-88.
  WANG H, HU S, YIN H, et al. Damage experimention on fragment impact cylindrical charge with thin shell[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3):85-88.(in Chinese)
- [18] 王昕,蒋建伟,王树有,等.破片撞击起爆柱面带壳装药的临界速度修正判据[J].爆炸与冲击,2019,39(1): 25-32.
  WANG X, JIANG J W, WANG S Y, et al. Critical detonation velocity calculation model of cylindrical covered

charge impacted by fragment [J]. Explosion and Shock Waves, 2019, 39(1): 25-32. (in Chinese)

[19] SAS IP, Inc. AUTODYN users manual [M]. California: Century Dynamics Corporation, 2005.