引用本文: | 黄允忠.椭圆型方程 Galerkin方法的研究.[J].国防科技大学学报,1985,(3):77-83.[点击复制] |
Huang Yunzhong.A Researh on the Galerkin Method of Elliptic Equations[J].Journal of National University of Defense Technology,1985,(3):77-83[点击复制] |
|
|
|
本文已被:浏览 5254次 下载 5165次 |
椭圆型方程 Galerkin方法的研究 |
黄允忠 |
()
|
摘要: |
本文考察一类二阶椭圆型方程的 Galerkin方法,首先,借助于(-⊿)-1,将方法置于算子框架中,然后,应用算子方程的近似理论,研究了方法的收敛性,如同往常那样,有限元近似的误差估计是||u0-uh||H0(?)+h︱u0-uh|H1(?)≤chk+1|u0|Hk+1(?)同时,得到了Aubin-Nitsche 技巧的一种易于应用的形式(定理 2)。文献[1]及[2]中的方法和文献[3]及[5]中的一些结果得到了推广。 |
关键词: |
DOI: |
投稿日期:1985-08-05 |
基金项目: |
|
A Researh on the Galerkin Method of Elliptic Equations |
Huang Yunzhong |
Abstract: |
In this paper,the Galerkin method for solving a class of homogeneous Dirichlet problems of the second-order elliptic equation is put into the operator scheme by verture of (-⊿)-1. I study the convergence of the method. The error estimates of the finite element and a form wich is applied more conveniently in some cases than the Aubin-Nitche technique are obtained. |
Keywords: |
|
|