引用本文: | 蒋增荣.一维变换与二维变换的等价以及二维DFT的向量算法.[J].国防科技大学学报,1987,(1):68-75.[点击复制] |
Jiang Zengrong.Equivalence of One-Dimensional General Transforms and Two-Dimensional General Transforms and the Vector Algorithm of Two-Dimensional DFTs[J].Journal of National University of Defense Technology,1987,(1):68-75[点击复制] |
|
|
|
本文已被:浏览 5010次 下载 5221次 |
一维变换与二维变换的等价以及二维DFT的向量算法 |
蒋增荣 |
()
|
摘要: |
本文证明了当且仅当 [R]=[P]T [Q]时,一维变换 Y=[R]X与二维变换[Y]=[Q] [X] [P] 相互等价。此外,讨论了Hadamard 变换以及具有循环卷积特性的一维变换与二维变换的等价问题。最后,利用上述等价定理,导出了二维DFT的一种比行列算法更为有效的快速算法—向量算法。 |
关键词: |
DOI: |
投稿日期:1985-02-18 |
基金项目: |
|
Equivalence of One-Dimensional General Transforms and Two-Dimensional General Transforms and the Vector Algorithm of Two-Dimensional DFTs |
Jiang Zengrong |
Abstract: |
In this paper,we discuss necessary and sufficient condition under which the one-dimensional general transforms equivalent to two-dimensional general transforms
Theorem:Let [X],[Y] be the matrix representations of vectors X,Y respectively,and let [R],[Q],[P] be three matrices of order N M x N M,N x N,M x M respectively,[X],[Y] are of order N x M,X ,Y are dimension N M. (1) If and only if [R]=[P]T [Q],Y=[R]X and [Y]=[Q] [X] [Q] for any vector X,where denotes Kronecker Product of matrices;
(2) If Y=[R]X and [Y]=[Q] [X] [P] for any vector X,then [R] is symmetric,if and only if [Q],[P] are symmetric or anti-symmetric matrices,simultaneously,and
Ri+jN,k+lN=±Ri+lN,k+jN
Ri+jN,k+ln=±Rk+jN,i+lN
(i,k=0,l,…,N-I;j,l=0,l,…,M-1)
Nextly,we have discussed the equivalence of Walsh-Hadamard transforms and that of any general transforms having the cyclic convolution property (CCP)(DFT,NTT,PT). Lastly,we have introduced a fast algorithm of 2D-DFT-Vector Algorithm by using above equivalence theorem,which is more efficient than the row-column method of 2D-DFTs. |
Keywords: |
|
|