引用本文: | 胡庆军,吴翊.Cρ 准则下选择最优子集的并行算法.[J].国防科技大学学报,1993,15(2):94-98.[点击复制] |
Hu Qingjun,Wu Yi.A Parallel Algorithm of Selecting the Best Subset on Cρ Criterion[J].Journal of National University of Defense Technology,1993,15(2):94-98[点击复制] |
|
|
|
本文已被:浏览 6470次 下载 5954次 |
Cρ 准则下选择最优子集的并行算法 |
胡庆军, 吴翊 |
(系统工程与应用数学系)
|
摘要: |
Cρ 准则[1]是目前颇受重视的一种变量选择准则。本文针对大型线性回归模型,推导了从所有可能子集中用Cρ准则选择最优子集的(乘除法)运算次数,提出了Cρ准则下变量选择的并行算法。给出了在 YH-l和 YH-2 向量巨型计算机上运行该算法的模拟结果且获得了15 倍左右的向量加速比s/v,体现了该算法的优越性。 |
关键词: 线性回归模型,变量选择准则,子集回归,并行计算,向量加速比 |
DOI: |
投稿日期:1991-07-16 |
基金项目: |
|
A Parallel Algorithm of Selecting the Best Subset on Cρ Criterion |
Hu Qingjun, Wu Yi |
(Department of System Engineering and Applied Mathematics)
|
Abstract: |
The Cρ criterion[l] is recently paid much attention to as an important one of variable selection. A parallel algorithm and the number of operations (multiplications and divisions) of selecting the best subset from a11 possible subsets,with regard to a large-scale linear regression model under Cρ criterion,are presented. The simulation results for the algorithm on the vector super-computers YH-1 and YH-2 are given. The vector speed-up,ratio,s/v, approximates to fifteen and the advantages of the algorithm are shown. |
Keywords: linear regression model,variable selection criterion,subset regression,parallel computation,vector speed-up ratio |
|
|