引用本文: | 王同权,张树发,沈永平,等.相空间有限元方法在解二维中子输运方程中的应用.[J].国防科技大学学报,1997,19(6):107-112.[点击复制] |
Wang Tongquan,Zhang Shufa,Shen Yongping,et al.Finite Element Method Applied to the Two-Dimensional Neutron Transport Equation[J].Journal of National University of Defense Technology,1997,19(6):107-112[点击复制] |
|
|
|
本文已被:浏览 6918次 下载 6306次 |
相空间有限元方法在解二维中子输运方程中的应用 |
王同权, 张树发, 沈永平, 王尚武 |
(国防科技大学 应用物理系 湖南 长沙 410073)
|
摘要: |
本文采用相空间有限元方法求解了柱形临界多群中子输运问题。其中对于方程中的坐标变量用分片连续线性多项式作为试探函数,对于方程中的角度变量用分片连续双线性多项式作为试探函数。整个求解空间区域和角度区域分别采用三角形和矩形单元划分,然后利用迦辽金方法得到一个以网格点处角通量为未知数的线性联立代数方程组,方程组中的系数矩阵的存储采用了压缩存储技术。最后用高斯消元法解此有限元方程组,表明相空间有限元方法计算收敛性较好、计算精度高。 |
关键词: 相空间有限元方法,中子输运,试探函数,迦辽金方法 |
DOI: |
投稿日期:1997-06-10 |
基金项目: |
|
Finite Element Method Applied to the Two-Dimensional Neutron Transport Equation |
Wang Tongquan, Zhang Shufa, Shen Yongping, Wang Shangwu |
(Department of Applied Physics,NUDT,Changsha,410073)
|
Abstract: |
The phase-space finite element method is applied to the multigroup neutron transport equation in cylindrical critical systems. The continuous piecewise polynomial trial functions are trilinear in the space variables and bilinear in the angle variables. Elements are triangular in the spatial domain and rectangular in the angle domain. Galerkin method is used to derive a set of simultaneous algebraic equations. The coefficient matrices of the algebraic equations are compressed and stored. The resulting finite element equations are solved by gaussion elimination method. Numerical results are compared to those obtained by SN calculations. FEM was observed to yield a higher order of convergence and accuracy. |
Keywords: phase-space FEM,neutron transport,trial functions,Galerkin method |
|
|
|
|
|