引用本文: | 夏刚,刘新建,程文科,等.钝体高超声速气动加热与结构热传递耦合的数值计算.[J].国防科技大学学报,2003,25(1):35-39.[点击复制] |
XIA Gang,LIU Xinjian,CHENG Wenke,et al.Numerical Simulation of Coupled Aeroheating and Solid Heat Penetration for a Hypersonic Blunt Body[J].Journal of National University of Defense Technology,2003,25(1):35-39[点击复制] |
|
|
|
本文已被:浏览 7226次 下载 5857次 |
钝体高超声速气动加热与结构热传递耦合的数值计算 |
夏刚, 刘新建, 程文科, 秦子增 |
(国防科技大学 航天与材料工程学院,湖南 长沙 410073)
|
摘要: |
气动加热与结构热传递耦合问题在航天和工程应用领域非常重要。分别采用松耦合与紧耦合方法,数值模拟了高超声速二维圆管绕流的流场与结构传热耦合的非定常过程。在紧耦合方法中,流场部分采用基于Navier-Stokes方程的有限体积法,将AUSM+格式与时间方向的显式多步Runge-Kutta法结合;结构传热部分采用基于二维热传导方程的Galerkin有限元法。流场与结构区通过交界面的热流和温度边界条件实现耦合。计算结果分别与实验、文献做了对比,结构内部温度变化关系以及壁面的热流分布均较好地吻合。两种耦合方式的计算结果对比表明,对于流场特征时间远小于结构传热特征时间的问题,松耦合方法计算效率高,精度与紧耦合方法接近。 |
关键词: 耦合计算 结构传热 气动加热 高超声速 |
DOI: |
投稿日期:2002-09-21 |
基金项目: |
|
Numerical Simulation of Coupled Aeroheating and Solid Heat Penetration for a Hypersonic Blunt Body |
XIA Gang, LIU Xinjian, CHENG Wenke, QIN Zizeng |
(College of Aerospace and Materials Engineering, National Univ. of Defense Technology, Changsha 410073, China)
|
Abstract: |
The coupling problems of aeroheating and solid heat penetration are very important to aerospace and engineering applications. The loosely-coupled and the fully-coupled methodology are both applied to simulate a two-dimensional hypersonic fluid-solid thermally coupled flow around a cylinder. The unsteady Navier-Stokes equations and the 2D unsteady heat-conduction equation are derived, solved by the finite volume and the Galerkin finite element methods respectively. The coupling is processed by the boundary conditions of heat flux and temperature at the fluid/solid interface. The flow part is solved by AUSM+ and explicit multi-step Runge-Kutta method. The results are compared with the experimental data and computational results from the reference. The method is shown to give good predictions of the temperature variation and heat flux distribution, and the loosely-coupled method is shown to be more efficient and similar accurate if the characteristic time for fluid is far less than the time for solid. |
Keywords: coupled simulation structural thermal heat penetration hypersonic |
|
|
|
|
|