引用本文: | 邱浪波,王广云,王正志.基因表达缺失值的加权回归估计算法.[J].国防科技大学学报,2007,29(1):111-115, 125.[点击复制] |
QIU Langbo,WANG Guangyun,WANG Zhengzhi.Missing Value Estimation for Microarray Expression Data Based on Weighted Regression[J].Journal of National University of Defense Technology,2007,29(1):111-115, 125[点击复制] |
|
|
|
本文已被:浏览 6453次 下载 5778次 |
基因表达缺失值的加权回归估计算法 |
邱浪波1,2, 王广云1,2, 王正志1 |
(1.国防科技大学 机电工程与自动化学院,湖南 长沙 410073;2.空军工程大学 电讯工程学院,陕西 西安 710077)
|
摘要: |
在基因芯片实验中, 数据缺失客观存在,并在一定程度上影响芯片数据后续分析结果的准确性。在不增加实验次数的情况下,缺失值估计是降低缺失数据对后续分析影响的有效方法。利用相似性信息的核加权函数来实现缺失值回归估计的局部化,提出了基于加权回归估计的基因表达缺失值估计算法。在两个不同类型的基因芯片数据上,将新方法与几种已知的方法进行了比较分析。实验结果表明,新的估计算法具有比传统缺失值估计算法更好的稳定性和估计准确度。 |
关键词: 基因芯片表达 缺失值 加权回归 |
DOI: |
投稿日期:2006-09-03 |
基金项目:国家自然科学基金资助项目(60471003) |
|
Missing Value Estimation for Microarray Expression Data Based on Weighted Regression |
QIU Langbo1,2, WANG Guangyun1,2, WANG Zhengzhi1 |
(1.College of Mechatronics Engineering and Automation, National Univ. of Defense Technology, Changsha 410073, China;2.Telecommunication Engineering Institute, Air Force Engineering Univ., Xi'an 710077, China)
|
Abstract: |
In microarray experiments, the missing value does exist and somewhat affects the stability and precision of the expression data analysis. Compared with increasing experiments, missing value estimating is preferred in reducing the influence of missing values on the post-processing. With the kernel weight based on similarly between target gene and sample genes, which localize missing value estimation, a new method based on weighted regression is presented. On the two real microarray expression datasets, the novel method was compared with several existing methods. Experimental results show that the novel method has better stability and precision than the existing methods that have been employed. |
Keywords: microarray expression missing value weighted regression |
|
|
|
|
|