引用本文: | 沈林成,彭双春,牛轶峰,等.BTT导弹制导律研究综述.[J].国防科技大学学报,2011,33(2):106-112.[点击复制] |
SHEN Lincheng,PENG Shuangchun,NIU Yifeng,et al.A Survey on Guidance Laws for BTT Missiles[J].Journal of National University of Defense Technology,2011,33(2):106-112[点击复制] |
|
|
|
本文已被:浏览 8577次 下载 7528次 |
BTT导弹制导律研究综述 |
沈林成1, 彭双春1, 牛轶峰1, 孙未蒙2, 潘亮1 |
(1.国防科技大学 机电工程与自动化学院,湖南 长沙 410073;2.92854部队,广东 湛江 524009)
|
摘要: |
与STT导弹相比,BTT导弹在气动效率、机动能力、控制性能等方面具有明显优势,但其运动耦合特性也给传统研究框架下的制导律设计带来了挑战。本文针对BTT导弹制导律设计问题展开研究,首先描述了BTT导弹制导基本问题,分析了BTT导弹制导律设计的技术难点,需要综合考虑运动耦合、多约束、目标机动、弹体动态效应等因素,然后综述了国内外现代制导律设计的基本方法,将其分为双通道解耦法、球坐标法、现代几何法等,最后指出了BTT导弹制导律的进一步研究方向。 |
关键词: BTT导弹 制导律 通道解耦 球坐标法 微分几何 李群 微分平坦 |
DOI: |
投稿日期:2010-08-27 |
基金项目:国家安全重大基础研究资助项目(6138101007);国防科技大学博士研究生创新资助项目(B100303) |
|
A Survey on Guidance Laws for BTT Missiles |
SHEN Lincheng1, PENG Shuangchun1, NIU Yifeng1, SUN Weimeng2, PAN Liang1 |
(1.College of Mechatronics Engineering and Automation, National Univ. of Defense Technology, Changsha 410073, China;2.Army 92854, Zhanjiang 524009, China)
|
Abstract: |
BTT(bank-to-turn) missiles have overwhelming advantages than STT(skid-to-turn) missiles in aerodynamic efficiency, maneuverability, controllability, and the like. However, traditional methods of guidance law designing for BTT missiles face many challenges due to its motion coupling characteristic. In this paper the researches in BTT missile guidance law designing were surveyed. In detail, the basic problem for BTT missile guidance was described firstly, and the difficulties in guidance law designing were analyzed, that is, the factors such as motion coupling, multi-constraints, target maneuver, dynamic effects of missile body, and so on, should be considered synthetically. Then the state of the art in BTT missile guidance law designing was discussed, which could be classified as channels decoupling method, sphere coordinate method and modern geometry method. Finally the further directions of BTT missile guidance law were proposed. |
Keywords: BTT missiles guidance law channels decoupling spherical coordinate method differential geometry Lie-group differential flatness |
|
|
|
|
|