引用本文: | 朱立为,汪亚,王翔,等.空时频域中欠定混合条件下的波达方向估计.[J].国防科技大学学报,2015,37(5):149-154.[点击复制] |
ZHU Liwei,WANG Ya,WANG Xiang,et al.Underdetermined direction of arrival estimation based on spatial time-frequency distributions[J].Journal of National University of Defense Technology,2015,37(5):149-154[点击复制] |
|
|
|
本文已被:浏览 8526次 下载 6062次 |
空时频域中欠定混合条件下的波达方向估计 |
朱立为1,2, 汪亚1, 王翔3, 黄知涛3 |
(1.国防科技大学 电子科学与工程学院, 湖南 长沙 410073;2.
2.电子信息系统复杂电磁环境效应国家重点实验室, 河南 洛阳 471003;3.2.电子信息系统复杂电磁环境效应国家重点实验室, 河南 洛阳 471003)
|
摘要: |
波达方向估计是阵列信号处理领域的热点问题,但经典的波达方向估计方法通常要求阵元数大于源信号个数,即满足超定条件,而在实际中往往面临的是源信号个数大于阵元数的欠定条件。基于此,提出了一种基于空间时频分布的多重信号分类扩展算法,通过将空间时频分布矩阵进行扩展,实现了欠定条件下的波达方向估计。相比时频多重信号分类算法,所提算法能同时适应超定和欠定条件;相比已有的欠定波达方向估计方法,其不但保证了波达方向估计的精度,而且放宽了对源信号稀疏性的要求,同时还降低了对快拍数的要求。仿真实验结果证明了该方法的有效性。 |
关键词: 波达方向 时频分布 欠定 |
DOI:10.11887/j.cn.201505023 |
投稿日期:2014-09-28 |
基金项目:CEMEE国家实验室开放课题基金资助项目(2014K104B);国家自然科学基金资助项目(61401490) |
|
Underdetermined direction of arrival estimation based on spatial time-frequency distributions |
ZHU Liwei1,2, WANG Ya1, WANG Xiang3, HUANG Zhitao3 |
(1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;2.
2.The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China;3.2.The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China)
|
Abstract: |
In the field of array signal processing, direction of arrival (DOA) estimation is a hotspot problem. Classical DOA estimation methods usually require the number of sensor should be larger than the source signals’ (which the so-called over-determined case is). However, what we encounter in practice is always the underdetermined case in which the number of source signal is larger than the sensors’. To solve the problem, a multiple signal classification (MUSIC) extension algorithm based on spatial time-frequency distribution was proposed to achieve the underdetermined DOA estimation by expanding the dimension of the spatial time-frequency distributions matrices. Compared with the existing time-frequency MUSIC, the proposed algorithm can be applied to both the over-determined and the underdetermined cases. The proposed algorithm also has advantages over the existing underdetermined DOA estimation methods for it guarantees the estimation precision, relaxes the requirements for source signal sparseness and lowers standards of the number of snapshots. Simulation results confirm the validity and high performance of the proposed algorithm. |
Keywords: direction of arrival time-frequency distributions underdetermined |
|
|
|
|
|