引用本文: | 王东方,邓小刚,王光学,等.高超声速尖双锥流动高精度数值模拟.[J].国防科技大学学报,2016,38(4):54-63.[点击复制] |
WANG Dongfang,DENG Xiaogang,WANG Guangxue,et al.Numerical simulation of hypersonic double cone flows with high-order methods[J].Journal of National University of Defense Technology,2016,38(4):54-63[点击复制] |
|
|
|
本文已被:浏览 9279次 下载 7264次 |
高超声速尖双锥流动高精度数值模拟 |
王东方1, 邓小刚1, 王光学1,2, 刘化勇3 |
(1.国防科技大学 航天科学与工程学院, 湖南 长沙 410073;2.
2.中山大学 物理学院, 广东 广州 510006;3.中国空气动力研究与发展中心, 四川 绵阳 621000)
|
摘要: |
以25°/55°尖双锥外形的高超声速低焓层流流动模拟为例,对高阶加权紧致非线性格式模拟激波/边界层干扰流动的能力进行验证和确认。空间离散采用二阶MUSCL和三阶、五阶加权紧致非线性格式,时间离散采用二阶精度双时间步方法,通量函数采用混合Roe-Rusanov,AUSMPW+,Van Leer等,对比了不同精度空间离散格式对时间、网格收敛特性和通量函数耗散特性的影响。数值模拟结果表明采用高精度空间离散格式能在较疏的网格上获得收敛解,并能消除结果对通量函数的敏感性,但收敛需要推进更久的计算时间。数值模拟结果与实验测量结果吻合良好,满足工程精度要求。 |
关键词: 验证与确认 激波/边界层干扰 高精度方法 高超声速流动 |
DOI:10.11887/j.cn.201604009 |
投稿日期:2016-04-06 |
基金项目:国防科学技术大学科研计划资助项目(ZDYYJCYJ20140101) |
|
Numerical simulation of hypersonic double cone flows with high-order methods |
WANG Dongfang1, DENG Xiaogang1, WANG Guangxue1,2, LIU Huayong3 |
(1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;2.
2. School of Physics, Sun Yatsen University, Guangzhou 510006, China;3. China Aerodynamics Research and Development Center, Mianyang 621000, China)
|
Abstract: |
Hypersonic low enthalpy laminar flows of double cone with 25°/55° geometry were simulated by using high-order WCNS (weighted compact nonlinear schemes), and their capabilities to accurately predict laminar shock wave/boundary layer interaction were examined. The simulations were performed through adopting the second order MUSCL, the third-order and the fifth-order WCNS as spatial discretization schemes, employing the second order dual time-stepping approach for time integration and using different flux functions, such as hybrid Roe-Rusnov, AUSMPW+ and Van Leer, for comparison. The effects of high-order methods on time and grid convergence, as well as the dissipation characteristics of flux functions, were analyzed. The numerical simulation results indicate that the high order methods can obtain well-resolved results on coarse grid and eliminate the sensitivity of flux functions. However, the high-order methods need longer computational time to reach convergence. The computed results show good agreement with the experimental data, and the computational accuracy may be characterized as reasonable for most engineering purposes. |
Keywords: verification and validation shock wave/boundary layer interaction high-order methods hypersonic flow |
|
|
|
|
|