引用本文: | 王新筑,周雄,朱炳杰,等.金属泡沫断裂韧性的试验研究.[J].国防科技大学学报,2016,38(4):174-178.[点击复制] |
WANG Xinzhu,ZHOU Xiong,ZHU Bingjie,et al.Experimental investigation on fracture toughness of metal foam[J].Journal of National University of Defense Technology,2016,38(4):174-178[点击复制] |
|
|
|
本文已被:浏览 7215次 下载 5923次 |
金属泡沫断裂韧性的试验研究 |
王新筑1,2,3, 周雄4, 朱炳杰5, 彭向和4 |
(1.吉林大学 汽车仿真与控制国家重点实验室, 吉林 长春 130025;2.
2.湖南大学 汽车车身先进设计制造国家重点实验室, 湖南 长沙 410082;3.
3.重庆大学 航空航天学院, 力学博士后工作站, 非均质材料力学重庆市重点实验室,重庆 400040;4.3.重庆大学 航空航天学院, 力学博士后工作站, 非均质材料力学重庆市重点实验室, 重庆 400040;5.4.国防科技大学 航天科学与工程学院, 湖南 长沙 400040)
|
摘要: |
金属泡沫在其实际应用中,断裂性能和断裂韧性对于承载的多孔金属泡沫有着重要的意义。基于美国试验材料学会相关标准,采用三点弯曲试样测定了铝泡沫的I型断裂韧性。研究表明,金属泡沫的断裂为脆性断裂,在裂纹尖端附近,孔壁最薄弱的区域最容易发生变形;随着进一步加载,一些孔壁发生断裂,微裂纹在断裂尖端附近出现。随着载荷的增加,主裂纹在缺口根部形成或由微裂纹合并而成,并开始在多孔结构内传播。裂纹沿着结构最薄弱处传播,并产生次生裂纹和裂纹桥。裂纹总的扩展方式还是I型断裂。根据试验P-V曲线特点,取最大载荷点对应的力与位移求解出铝泡沫的裂纹尖端临界张开位移的平均值为 0.051 mm。 |
关键词: 金属泡沫 断裂韧性 三点弯曲 裂纹尖端张开位移 |
DOI:10.11887/j.cn.201604027 |
投稿日期:2015-05-28 |
基金项目:汽车仿真与控制国家重点实验室开放基金资助项目(20121110);汽车车身先进设计制造国家重点实验室开放基金资助项目(31315010);中央高校基本科研业务费资助项目(CDJZR14325501);中国博士后基金面上资助项目(2011M500067) |
|
Experimental investigation on fracture toughness of metal foam |
WANG Xinzhu1,2,3, ZHOU Xiong4, ZHU Bingjie5, PENG Xianghe4 |
(1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China;2.
2. State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China;3.
3. Chongqing Key Laboratory of Heterogeneous Material Mechanics, Postdoctoral Station of Mechanics, College of Aerospace Engineering, Chongqing University, Chongqing 400040, China;4.3. Chongqing Key Laboratory of Heterogeneous Material Mechanics, Postdoctoral Station of Mechanics, College of Aerospace Engineering, Chongqing University, Chongqing 400040, China;5.4. College of Aerospace Sciences and Engineering, National University of Defense Technology, Changsha 410073, China)
|
Abstract: |
In practical applications, fracture properties and fracture toughness of porous metal foam for bearing are very important. Based on ASTM standards, three-point bending of aluminum foam samples was used to determine I type fracture toughness. It is shown that the fracture of metal foam is brittle fracture. The deformation is localized in the thinnest regions of the cell walls surrounding the crack tip. With further loading, some cell walls existed fracture phenomenon and microcracks appear in the vicinity of the crack tip. With the increasing of load a main crack is initiated at the notch root or at the pre-crack by a coalescence of microcracks, and starts to propagate through the cell structure. The crack follows the weakest path through the structure and creates the secondary cracks and crack bridges. The main way of crack extension is I type fracture. According to the P-V curve characteristics, taking the force and displacement of the maximum load point to calculate the critical crack tip opening displacement, the average crack tip opening displacement is 0.051mm. |
Keywords: metal foam fracture toughness three-point bending crack-tip opening displacement |
|
|
|
|
|