引用本文: | 李建平,张晗,罗永,等.两段探测目标的传感器任务调度问题0-1规划模型及算法.[J].国防科技大学学报,2017,39(3):121-129.[点击复制] |
LI Jianping,ZHANG Han,LUO Yong,et al.The 0-1 programming model and algorithm for the problem of sensor task scheduling for double detection[J].Journal of National University of Defense Technology,2017,39(3):121-129[点击复制] |
|
|
|
本文已被:浏览 8405次 下载 6342次 |
两段探测目标的传感器任务调度问题0-1规划模型及算法 |
李建平1, 张晗1, 罗永1, 朱承2, 何文涛2 |
(1. 国防科技大学 理学院, 湖南 长沙 410073;2. 国防科技大学 信息系统工程重点实验室, 湖南 长沙 410073)
|
摘要: |
为解决指挥系统控制中的调度困难,研究了一类特殊的传感器资源调度问。主要分析了跟踪目标的探测次数、时间间隔和传感器资源等约束条件。用跟踪目标的重要程度之和作为目标函数,建立了一个0-1规划的数学模型,再利用变换将其转化为0-1线性整数规划模型。利用割平面法求解得出最优调度策略,其能在工作量饱和的情况下合理调度传感器资源。为提高求解速度,提出了对应的模拟退火算法。通过对一些不同规模实例的求解,在资源利用率和算法的求解速度等指标上,与割平面法及遗传算法进行对比分析,验证了模型的有效性和模拟退火算法求解的高效性。 |
关键词: 传感器 任务调度 0-1规划 模拟退火算法 遗传算法 |
DOI:10.11887/j.cn.201703019 |
投稿日期:2016-05-05 |
基金项目:国家自然科学基金资助项目(61273322) |
|
The 0-1 programming model and algorithm for the problem of sensor task scheduling for double detection |
LI Jianping1, ZHANG Han1, LUO Yong1, ZHU Cheng2, HE Wentao2 |
(1. College of Science, National University of Defense Technology, Changsha 410073, China;2. The Key Laboratory of Information System Engineering, National University of Defense Technology, Changsha 410073, China)
|
Abstract: |
In order to resolve the scheduling difficulty in the control of command system, the resource scheduling problem of a special sensor was studied and the constraint conditions including detected times, the interval between two detections, and the resource restrict of sensor were analyzed. A 0-1 programming model was established and transformed to a 0-1 liner integer model whose objective function is the sum of the importance degree of tracking targets. The optimal solution which can reasonably schedule sensor resource when the workload is saturated was obtained by using the cutting plane algorithm. A corresponding simulated annealing algorithm was proposed to improve the speed of solving and was used to solve some examples. Compared with the cutting plane algorithm and the genetic algorithm in terms of resource utilization and the speed of solving, the validity of the proposed model and the high efficiency of the simulated annealing algorithm were proved. |
Keywords: sensor task scheduling 0-1 programming simulated annealing algorithm genetic algorithm |
|
|