引用本文: | 陈长海,万昌召,张瑞刚,等.陶瓷/薄钢板复合结构靶板抗高速侵彻性能研究.[J].国防科技大学学报,2022,44(5):193-200.[点击复制] |
CHEN Changhai,WAN Changzhao,ZHANG Ruigang,et al.Research on penetration resistances of ceramic/thin steel composite targets impacted by high-velocity fragments[J].Journal of National University of Defense Technology,2022,44(5):193-200[点击复制] |
|
|
|
本文已被:浏览 4174次 下载 3560次 |
陶瓷/薄钢板复合结构靶板抗高速侵彻性能研究 |
陈长海1,2,万昌召1,张瑞刚1,3,程远胜1,2 |
(1. 华中科技大学 船舶与海洋工程学院, 湖北 武汉 430074;2. 船舶和海洋水动力湖北省重点实验室, 湖北 武汉 430074;3. 中国兵器工业集团 晋西工业集团有限责任公司, 山西 太原 030057)
|
摘要: |
为探讨陶瓷/薄钢板复合结构靶板(ceramic/thin steel targets,CS靶板)的抗高速侵彻机理,通过弹道试验,分析了3 mm厚SiC陶瓷层和0.6 mm厚钢板层的CS靶板的破坏模式和抗侵彻性能,并与面密度基本相同的纯钢板进行了比较。在此基础上,基于能量守恒原理,建立了CS靶板抗高速侵彻的理论预测模型,并与试验结果进行了对比。结果表明,CS靶板中前陶瓷层的存在,使得后钢板层的破坏模式由剪切冲塞转变为花瓣开裂,大大提升了后钢板层的抗侵彻吸能效率,从而使得CS靶板的整体抗侵彻性能高于等面密度的纯钢板,CS靶板的整体抗侵彻效率较等面密度纯钢板提升15%以上;弹体穿透CS靶板后的剩余速度理论预测值与试验结果吻合较好,相对误差均在5%以内,验证了理论模型的合理性和有效性。 |
关键词: 穿甲力学 陶瓷 复合结构 高速破片 抗侵彻性能 |
DOI:10.11887/j.cn.202205021 |
投稿日期:2021-09-10 |
基金项目:湖北省自然科学基金资助项目(2020CFB514);中央高校基本科研业务费专项资金资助项目(HUST:2019kfyXJJS007) |
|
Research on penetration resistances of ceramic/thin steel composite targets impacted by high-velocity fragments |
CHEN Changhai1,2, WAN Changzhao1, ZHANG Ruigang1,3, CHENG Yuansheng1,2 |
(1. School of Naval Architecture & Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;2. Hubei Key Laboratory of Naval Architecture & Ocean Engineering Hydrodynamics, Wuhan 430074, China;3. Jinxi Industries Group Co. Ltd., Norinco Group, Taiyuan 030057, China)
|
Abstract: |
To explore the high-velocity-penetration resistant mechanism of ceramic/thin steel composite targets (hereafter called CS targets), the failure modes and penetration resistances of CS targets with 3 mm-thick SiC ceramic layer and 0.6 mm-thick steel layer were analyzed through ballistic tests, and compared with the monolithic steel plates of identical areal densities. Based on the energy conservation principle, a theoretical prediction model for high-velocity penetration of CS targets was established. Comparison between predictions and testing results was conducted. Results show that the failure modes of rear thin steel layers in CS targets change from shear plugging to petalling due to the existence of front ceramic layers, which greatly promotes the anti-penetration energy-absorption efficiency of rear thin steel layers. Therefore, the overall penetration resistances of CS targets are superior to and above 15% higher than the monolithic steel counterparts. The predicted residual velocities of projectiles after perforation of CS targets correlate well with those experimental results, and the relative errors are all within 5%, which proves the rationality and validity of present theoretical mode. |
Keywords: perforation mechanics ceramic composite structure high-velocity fragment penetration resistance |
|
|
|
|
|