引用本文: | 沈将华,周宇亭,王秀霞.服役工况下镍基单晶高温合金的损伤机制研究进展.[J].国防科技大学学报,2023,45(4):55-65.[点击复制] |
SHEN Jianghua,ZHOU Yuting,WANG Xiuxia.Research progress in damage mechanism of nickel-based single crystal superalloys under service conditions[J].Journal of National University of Defense Technology,2023,45(4):55-65[点击复制] |
|
|
|
本文已被:浏览 4895次 下载 3700次 |
服役工况下镍基单晶高温合金的损伤机制研究进展 |
沈将华1,2,周宇亭1,王秀霞1 |
(1. 西北工业大学 航空学院, 陕西 西安 710072;2. 陕西省冲击动力学及工程应用重点实验室, 陕西 西安 710072)
|
摘要: |
为提高镍基单晶叶片服役寿命、解决发动机和燃气轮机的关键核心技术,近年来国内外持续开展了大量针对镍基单晶高温合金服役情况下损伤与失效机制的研究。从实际服役条件出发,总结了镍基单晶高温合金疲劳、蠕变和热机械疲劳损伤机制等研究成果与进展。此外,针对大量实验造成的时间与成本增加问题,还总结了近年来在镍基单晶高温合金的寿命预测方法方面的研究工作与成果,并提出了目前在镍基单晶高温合金寿命评估与失效分析研究方面所面临的困难和挑战。 |
关键词: 镍基单晶高温合金 高温损伤 疲劳 蠕变 热机械疲劳 寿命预测 |
DOI:10.11887/j.cn.202304007 |
投稿日期:2023-03-14 |
基金项目:国家青年人才资助项目(人才函字〔2019〕189号) |
|
Research progress in damage mechanism of nickel-based single crystal superalloys under service conditions |
SHEN Jianghua1,2, ZHOU Yuting1, WANG Xiuxia1 |
(1. School of Aeronautics, Northwestern Polytechnical University, Xi′an 710072, China;2. Shanxi Key Laboratory of Impact Dynamic and Its Engineering Application, Xi′an 710072, China)
|
Abstract: |
In order to improve the service life of nickel-based single crystal blades and solve the key technology of aeroengine turbine and gas turbine, domestic and overseas researchers carried out a large number of research on the failure and damage mechanism of nickel-based single crystal superalloys under service conditions in recent years. The research achievements and progress of fatigue, creep and thermomechanical fatigue damage mechanism of nickel-based single crystal superalloys under service conditions were concluded. In addition, in view of the time and cost increase caused by a large number of experiments, the research works and achievements in life prediction methods of nickel-based single crystal superalloys in recent years were summarized, and the difficulties and challenges in life evaluation and failure analysis of nickel-based single crystal superalloys were proposed. |
Keywords: nickel-based single crystal superalloys high temperature damage fatigue creep thermomechanical fatigue life prediction |
|
|
|
|
|