引用本文: | 马维力,崔辉如,申柳雷,等.双参数弹性基功能梯度圆柱管自由振动的高阶梁理论解.[J].国防科技大学学报,2024,46(4):86-95.[点击复制] |
MA Weili,CUI Huiru,SHEN Liulei,et al.Free vibration of cylindrical functionally graded tubes on bi-parameter foundation based on a higher-order beam theory[J].Journal of National University of Defense Technology,2024,46(4):86-95[点击复制] |
|
|
|
本文已被:浏览 2530次 下载 1103次 |
双参数弹性基功能梯度圆柱管自由振动的高阶梁理论解 |
马维力1,崔辉如2,申柳雷3,王诗琦1,彭帆1,李显方4 |
(1. 长安大学 理学院, 陕西 西安 710064;2. 陆军工程大学 国防工程学院, 江苏 南京 210007;3. 国防科技大学 军政基础教育学院, 湖南 长沙 410072;4.中南大学 土木工程学院, 湖南 长沙 410075)
|
摘要: |
基于高阶剪切变形梁理论,推导了Winkler-Pasternak弹性基径向功能梯度空心圆柱管自由振动行为的控制方程。该方法无须引入剪切修正系数,自动满足空心圆柱管内外表面剪应力自由边界条件。通过引入辅助函数,将关于挠度和转角的耦合控制方程化为单一高阶微分控制方程。给出了典型边界条件下功能梯度空心圆柱管的频率和振型。将计算结果与已有文献结果对比,验证了所提理论的精度。可以为工程中常见的Winkler-Pasternak弹性基梁结构提供更高精度的一维弹性理论解,研究结果表明,功能梯度材料的梯度参数和弹性地基刚度系数对固有频率值影响显著。与高阶固有频率相比,刚度系数对低阶固有频率的影响更加明显。 |
关键词: 自由振动 功能梯度材料 空心圆柱管 Winkler-Pasternak弹性基 高阶剪切变形梁理论 |
DOI:10.11887/j.cn.202404009 |
投稿日期:2022-08-25 |
基金项目:国家自然科学基金面上资助项目(12072374);陕西省自然科学基础研究计划资助项目(2023-JC-QN-0010) |
|
Free vibration of cylindrical functionally graded tubes on bi-parameter foundation based on a higher-order beam theory |
MA Weili1, CUI Huiru2, SHEN Liulei3, WANG Shiqi1, PENG Fan1, LI Xianfang4 |
(1. School of Science, Chang′an University, Xi′an 710064, China;2. College of Defense Engineering, Army Engineering University, Nanjing 210007, China;3. College of Basic Military and Pilitical Education, National University of Defense Technology, Changsha 410072, China;4. School of Civil Engineering, Central South University, Changsha 410075, China)
|
Abstract: |
Based on the theory of high-order shear deformation beam, the governing equations for the free vibration behavior of Winkler-Pasternak elastic foundation radial function gradient hollow cylindrical pipe were derived. This method does not require the introduction of shear correction coefficient and automatically satisfies the free boundary condition of shear stress on the inner and outer surfaces of the hollow cylindrical pipe. By introducing auxiliary functions, the coupled equations for deflection and angle were transformed into a single high-order differential equation. The frequency and mode shapes of the function gradient hollow cylindrical pipe under typical boundary conditions were given. The calculation results were compared with the results in the existing literature to verify the accuracy of the proposed theory. It can provide higher precision one-dimensional elastic theoretical solutions for the common Winkler-Pasternak elastic beam structures in engineering. Research results show that the gradient parameter and elastic foundation stiffness coefficient of the function gradient material have a significant impact on the natural frequency value. Compared with the high-order natural frequency, the stiffness coefficient has a more significant impact on the low-order natural frequency. |
Keywords: free vibration functionally graded material hollow cylindrical tube Winkler-Pasternak elastic foundation higher-order shear deformation beam theory |
|
|
|
|
|