国防科技大学学报

JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY 第15卷第1期 1993年3月 Vol. 15 No. 1

二维 DFT 和 DCT 的 Systolic 阵列*

田泽荣 李晓梅

(电子计算机系)

摘 要 超级计算中一个活跃的研究领域是将某些有限和,如离散富里叶变换(DFT)、 离散余弦变换(DCT),映射到多处理机阵列上。本文首先通过二维 DFT 的行列分解算法流 程图,给出了计算二维 DFT 的二种 Systolic 阵列:一种是由 N₁ 个处理器组成的线性阵列,所 花时间步为 O(N₁N₂)(设二维 DFT 为 N₁×N₂ 长的),与行列分解算法在单处理机上顺序执 行所花时间相比,加速比为 O(N)(设 N₁=N₂=N).这一结果无论是在时间消耗,还是在 PE 数量上都是目前最优的。另一种是由 N₁×N₂ 个处理器组成的矩形阵列,所需时间为 O(N₁+ N₂),与行列算法在单处理机上顺序运行所花时间相比,加速比为 O(N²)(这里仍假定 N₁= N₂=N).本文还给出了二维 DCT 的与二维 DFT 相似的 Systolic 阵列结构。不难将上述阵列 推广到多维的情况。

关键词 信号处理,二维 DFT,二维 DCT,行列分解算法,Systolic 阵列

分类号 TN911.7

离散富里叶变换、离散余弦变换在信号处理、模式识别、计算机视觉等许多领域有 着广泛的应用。在这些领域中,人们处理大量的离散信号,这就需要更为复杂的技术。例 如,一个长为 N 的 M 维 DFT 在单处理机上需 O(NlogN)步,且迭代 M 次,其时间复杂 性为 O(M • N^MlogN).具有这样复杂性的问题,对小的 M 和 N 是可接受的,但当 M 和 N 很大时,普通的方法和计算机将无能为力,于是人们提出了有关快速 DFT 的多种并行 处理结构。1987 年 Gertner 和 Shamash 以行列分解算法为基础介绍了一种混合结构方 法^[13],但这种结构需要的旋转网在 VLSI 设计中是很困难的。为避免这一问题,1990 年 Weichengshen 提出了基于行列分解算法结构的几种 Systolic 阵列结构^[23]。这几种结构与 行列分解算法的顺序实现比都达到了渐近最优加速。本文在此基础上进一步给出了两种 二维 DFT 的 Systolic 阵列.一种是线性阵列,与文[2]结果相比,在 PE 数和时间消耗上 有明显的改进;另一种为矩形阵列,所得结果与[2]中结果相当。此外,本文还给出了二 维 DCT 的 Systolic 阵列结构。

1 行列分解算法及其流程图

M维序列x (n_1 , n_2 , …, n_M)的 DFT 可表成:

^{× 1991}年10月10日收稿

$$Y(k_1,k_2,\cdots,k_M) = \sum_{\substack{n_1,n_2,\cdots,n_M\\ \cdots,n_M}} x(n_1,n_2,\cdots,n_M)$$
$$\cdot W_{\mathcal{W}_1}^{n_k k_1} \cdot W_{\mathcal{W}_2}^{n_k k_2} \cdot \cdots \cdot W_{\mathcal{W}_M}^{n_M k_M}$$

其中 0 《 n_i k_i 《 N_i - 1, i = 1, …, M

$$W_{N_i}^{n,k_i} = \exp\left(-j\frac{2\pi n_i k_i}{N_i}\right)$$

若M=2,则二维DFT为

$$Y(k_1,k_2) = \sum_{n_1=0}^{N_1-1N_2-1} x(n_1,n_2) W_{N_1}^{n_1k_1} \cdot W_{N_2}^{n_2k_2}$$
$$G(n_1,k_2) = \sum_{n_2=0}^{N_2-1} x(n_1,n_2) W_{N_2}^{n_2k_2}$$
$$Y(k_1,k_2) = \sum_{n_1=0}^{N_1-1} G(n_1,k_2) W_{N_1}^{n_1k_1}$$

则

令

这就是行列分解算法。将其具体化为以下几个步骤:

- (1) 初始步:
- $G^{(0)}(n_1, K_2) = 0, \ 0 \le n_1 \le N_1 1, \ 0 \le K_2 \le N_2 1$ $Y^{(0)}$ $(K_1, K_2) = 0, \ 0 \leq K_1 \leq N_1 - 1, \ 0 \leq K_2 \leq N_2 - 1$
- (2) 递归步:

step 1:for $n_2 = 0$ to $N_2 - 1$ do $G^{(n_2+1)}(n_1,K_2)_1 = G^{(n_2)}(n_1,K_2)W_{N_2}^{K_2} + x(n_1,N_2-n_2-1)$ step 2: for $n_1 = 0$ to $N_1 - 1$ do

$$Y^{(n_1+1)}(k_1,k_2) = Y^{(n_1)}(k_1,k_2)W_{N_1}^{K} + G(N_1 - n_1 - 1,K_2)$$

由此得到行列分解算法流程图如下 $(N_1 = N_2 = 3)$; step1:

图 1

step2:

ac+b

图 3 行列分解算法流程图

- 二维 DFT 的 Systolic 阵列
- 2.1 线性阵列

在图 3 中将水平方向每一块的顶点看成一个整体,不难得到需 N_1 个处理器的线性 Systolic 阵列。如图 2 所示 $(N_1 = N_2 = 3)$

从图 2 可看出,阶段 1 所需时间为 $N_1N_2+N_2$,阶段 2 所需时间为 $N_1N_2+N_1$,所以 总的时间消耗为 $T_{\text{linear}} = 2N_1N_2+N_1+N_2$,与行列算法在单处理机上顺序实现所需时间 $N_1N_2(N_1+N_2)$ 相比,加速比为:

$$S_{\text{Linear}} = \frac{N_1 N_2 (N_1 + N_2)}{2N_1 N_2 + N_1 + N_2}$$

当 $N_1 = N_2 = N$ 时

 $T_{\text{linear}} = 2N(N+1);$ $S_{\text{linear}} = O(N)$

与文[2]中结果相比, PE 数由 2N-1 降至 N, 时间由 $2N^2+6N-2$ 降至 $2N^2+2N$ 。 step1:(图 4)

step2: (图 5)

图 5

PE 功能如下: (图 6)

2.2 矩形阵列

在图 1 中将每行上各顶点元素看成一体,可得二维 DFT 的由 $N_1 \times N_2$ 个处理器构成的 Systolic 阵列,如图 9 所示) $N_1 = N_2 = N = 3$).

从图 9 可以看出,阶段 1 耗时 $2N_1 - 1 + N_2$,第二阶段所需时间步为 $2N_2 - 1 + N_1$,因此总的时间消耗为:

$$T_{\rm rectangular} = 3(N_1 + N_2) - 2$$

与在单处理机上的顺序执行所需时间所成加速比为:

$$S_{\text{rectangular}} = \frac{N_1 N_2 (N_1 + N_2)}{3(N_1 + N_2) - 2}$$

图 6 行列分解算法的线性阵列

若
$$N_1 = N_2 = N$$
,则

$$T_{\text{rectangular}} = 6N - 2$$

 $S_{\text{rectangular}} = O(N^2)$

这一结果与文[2]同。 step1:(图7)

Wł Wł Wj W Wł Wł W W **W** 0 0 0 G(0,0) G(0,1) G(0,2 X(0,0)X(0,1)X(0,2)G(1,0) X(1,0)X(1,1)X(1,2)0 G(1,1) G(1,2 X(2,0)X(2,1)X(2,2)00G(2,2) (2,0)G(2,1

step2: (图 8)

图 8

图 7

PE 功能如下: (图 9)

3 二维 DCT 的 Systolic 阵列

设{ $x(n_1,n_2)$ }为二维实序列,则其离 散二维余弦变换(2D-DCT)定义为: 图 9 行列分解算法的矩形阵列 $y(k_1,k_2) = \sum_{n_1=0}^{N_1-1N_2-1} x(n_1,n_2)\cos\frac{(2n_1+1)K_1\pi}{2N_1}$ $\cdot \cos\frac{(2n_2+1)K_2\pi}{2N_2}$ 其中 $K_1=0, 1, \dots, N_i-1; i=1, 2.$ 令

$$G(n_1, K_2) = \sum_{n_2=0}^{N_2-1} x(n_1, n_2) \cos \frac{(2n_2+1)K_2\pi}{2N_2}$$
$$y(K_1, K_2) = \sum_{n_2=0}^{N_2-1} G(n_1, K_2) \cos \frac{(2n_1+1)K_1\pi}{2N_1}$$

则

这就是 2D-DCT 的行列分解算法。 进一步令:

$$U_{N} = e^{j\pi/N}$$

$$T_{1}(n_{1}, K_{2}) = \sum_{n_{2}=0}^{N_{2}-1} x(n_{1}, n_{2}) U_{N_{2}}^{n_{K_{2}}}$$

$$T_{2}(K_{1}, K_{2}) = \sum_{n_{1}=0}^{N_{1}-1} G(n_{1}, K_{2}) U_{N_{1}}^{n_{K_{1}}}$$

$$(n_{1}, K_{2}) = \operatorname{Re} \{ e^{jK_{2}\pi/2N_{2}} \cdot T_{1}(n_{1}, K_{2}) \}$$

则有

$$y(K_1, K_2) = \operatorname{Re}\{e^{jK_1\pi/2N_1\pi} \cdot T_2(K_1, K_2)\}$$

那么计算 $y(K_1, K_2)$ 步骤如下:

(1) 初始步:

$$T_1^{(0)}(n_1, K_2) = 0, 0 \le n_1 \le N_1 - 1, 0 \le K_2 \le N_2 - 1$$

$$T_1^{(0)}(K_1, K_2) = 0, 0 \le K_1 \le N_1 - 1, 0 \le K_2 \le N_2 - 1$$

(2) 递归步:

step1: for
$$n_2 = 0$$
 to $N_2 - 1$ do
 $T_1^{(n_2+1)}(n_1, K_2) := T^{(n_2)}(n_1, K_2) U_{N_2}^{K_2} + x(n_1, -N_2 - n_2 - 1)$
 $G(n_1, K_2) = \operatorname{Re} \{ e^{jK_2\pi/2N_2} \cdot T^{(N_2)}(n_1, K_2) \}$

step2: for
$$n_1 = 0$$
 to $N_1 - 1$ do
 $T_{2^{(n_1+1)}}^{(n_1+1)}(K_1, K_2) := T^{(n_1)}(K_1, K_2) U_{N_1}^{K_1} + G(N_1 - n_1 - 1, K_2)$
 $y(K_1, K_2) = \operatorname{Re} \{ e^{jK_1 \pi/2N_1} \cdot T_2^{(N_1)}(K_1, K_2) \}$

由此得到 2D-DCT 行列分解算法流程图如下: (图 10, 11)

图 10

 $(N_1 = N_2 = 3)$ 。其中 $E_1 = e^{j\pi/2N_2}$ 。

这是 step1 的流程图, step2 的流程图与之类似, 这里限于篇幅就不画了。由此图和图 6、图 9 不难得到 2D-DCT 的 Systolic 阵列。

图 11

4 结束语

文[2]和本文均给出了一些二维离散 DFT 和 DCT 的 Systolic 阵列结构,从流程图中 一定还可找到行列分解算法的有价值的 Systolic 阵列结构。有关其它一些类似离散变换 的相应 Systolic 阵列也是值得研究的。最后,一个有趣的问题是:是否存在只需O(logN) 时间步的关于行列算法的 Systolic 阵列。

参考文献

- Gertner I, Shamash M. VLSI architectures for multidimensional Fourier transforms processing. IEEE Trans Cornps, 1987, C-36, (11),1265~1274
- 2 Weichengshen. Systolic arrays for Multidimemensional Discrete transforms. The Journal of Supercomputing, 1990,4: 201~222
- 3 Shen W, Oruc A Y. On Systolic contractions of program graphs. IEEE Trans, Comps, 1989, C - 38, (10): 1451~1457
- 4 Thompson C D. Fourier transforms in VLSI. IEEE Trans Comps, 1983, C-32(11):1047~1057
- 5 Oppenheim A and Schafer R. Digital Signal Processing. Prentice-Hall, Englewood Cliffs, N J, 1975

Systolic Arrays for Two Dimensional DFT and DCT

Tian Zerong Li Xiaomei (Department of Computer Science)

Abstract

An active area of research in supercomputing is concerned with mapping certain sums, such as discrete Fourier transforms (DFT) and discrete cosine transforms (DCT) to multi-processor arrays. This paper presents two kinds of systolic arrays for 2D-DFT using the flow diagram of row-column de-

composition algorithm. One is a linear array of N_1 processors (if the DFT is $N_1 \times N_2$), and it takes O (N_1N_2) time steps. The speed—up of this array over the sequential implementation of the row—column decomposition algorithm on a single processor is O(N) (IF $N_1=N_2=N$). This result is currently optimal not only in PE numbers, but also in time cost. The other is a rectagular array of $N_1 \times N_2$ processors and it takes $O(N_1+N_2)$ steps. The speedup of it over the sequential implementation of the row—cotumn decomposition algorithm on a single processor is $O(N^2)$ (IF $N=N_1=N_2$). At last, the paper gives two systolic arrays of 2D-DCT, which are similar to that of 2D-DFT. Furthermore, these systolic arrays can be easily generalized to multi—dimensional cases.

Key words two-dimensional DFT, row-column decomposition algorithm, two-demensional DCT, systolic arrays

航空航天工业部重奖获得航空金奖的十名专家

航空航天部于 1992 年 12 月 23 日颁布关于重奖对中国航空工业作出杰出贡献者的决定,重奖航空 金奖获得者-----十名航空专家,同时颁发金质奖章和荣誉证书。

获得航空金奖的十名专家是: 歼八飞机总设计师、中科院学部委员顾诵芬; 飞机设计制造管理专家 陆颂善; 强五飞机总设计师陆孝彭; 航空发动机制造管理专家程华明; 航空机载雷达专家朱克昕; 海防 导弹总设计师彭历生; 航空材料专家、中科院学部委员颜鸣皋; 国际著名焊接专家关桥; 国际著名铸造 专家、中科院学部委员周尧和; 著名工程热物理湍流应用专家高歌。