G, = B, — B,D}",D,; (63.b)

L, = K] D} + R,G, (63.¢)
M, =— R,B, + LD, (63.d)
L, = KJD4T + RJCI DT (63.¢e)
M, =— RJC] + L,D}, (63.1)

DJ.T D DT
Do _ 1: 2 11 21} (63.g)

D\DLT Dg
4 Conclusion

In this paper we have solved the control problem for linear system with part uncer-
tain parameters under bounded noise. The effect of parameters uncertainty can be con-
verted to an equivalent effect ofja new set of bounded noise. Thus above problem can be
converted into a H., control problem of a scaled difinite system under an extended
bounded noise. Then we have dealt with the H., standard problem of four blocks in gen-
eral case (D, 70), and further obtained the explicit formulas of complete solution set
for the parameter robust control problem. These formulas are related to the contolled
plant parameters and design parameters directly, and can be programmed on computer
conveniently.

In summary, this paper is concerned with parameter robust control problem which
appears in many engineering design tasks,and gives the explicit formulas of complete so-
lution set. These results will be with a good prospect in practical engineering applica-

tions.
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Robust Control of Linear Systems with
Part Uncertain Parameters
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Abstract This paper is concerned with the control problem of linear systems with part
uncertain parameters under a bounded energy noise --the parameter robust control. The flight
control of airplane with a precise model under an uncertain information condition of aerody-
namic parameters, is a typical example. At first we simplify it into a scaled He. control prob-
lem, and then deduce a solvability condition and give an explicit cxpression of the complete
solution set for the parameter robust control problem by J-lossless factorization method.

Key words Parameter robust control ,H.. standard control problem, J-lossless factoriza-

tion

1 Introduction

If all parameters of a linear system can be known precisely, the control problems of
it under noise with a given spectral density are well studied in LQG criterion, and that
can be solved by the separation principle.

The control problems of above system under a bounded energy noise with unknown
spectral density, is discribed in H.. framework. On the other hand, for a definite system
with a model varying in an uncertainty range described by H.. norm, it’s robust stability
problem is a typical H.. problem. Recently ten years researches have given complete so-
lutions for these two H.. problems.

The control problem of a plant with H. uncertain model under bounded energy
noises with unknown spectral density,is a u problem proposed by Doyle. Until now how
to solving u problem is still open. Thus it does not been concerned with in this paper.

This paper is concerned with another common uncertainty —parameter uncertainty.
In this case the framework and order of plant’s model is known precisely and correctly,

but the parameters in model are not precisely known, and they may vary in some real in-

» Received Junc 15, 1993
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tervals. A more generalized statement is, some part parameters are known accurately,
and other part parameters may vary in some real intervals. For example, in the flight
process of an airplane, the parameters of airplane self can be given accurately, but the
aerodynamic parameters may be with a quite large uncertainty and vary in given ranges.
Although Kharitonov proposed a convenient criterion to judge if all the roots of the in-
terval coefficiant polynomial are stable, it seems helpless to this problem: How to design
a compensator for the uncertain parameter plant under bounded energy noise of un-
known spectral density!, In this paper we will convert it into a scaled H.. control prob-
lem, and then give an explicit expression for complete solution set for this parameter ro-

bust control problem by J-lossless factorization method.

2 Problem Formulation

Consider the following uncertain system P.
X0 = (A+ AAuNX@® + (B+ ABe)OU @) + B.W @) (l.a)
Y@) = (C+ACENX@) + (D+ ADO)HYU @) + D W (@) (1.b)
Z(t) = C(H)X@®) + D.OU® (1.¢)
where X (¢) € R"is the state, U () € R*is control input, W(z) € R™ is the noise, Y () €
R’ is the measured output, Z(¢) € R?is the controlled output. A, B, C, D, B,, C..
D, and D, are given real constant matrices of dimensions of nXn, n Xk, rXn, rXk, n
Xm, pXn, pXk,rXm. AACt), AB(t), AC(t) and AD(t) are real-valued matrix func-
tions which represent time-varying parameter uncertainties. The parameter uncertainties
considered here are norm-bounded and of following forms:
AA(t) AB(@® H,
[AC(:) AD(t):|= [Hz

where H,, H,, E,., and E, are known constant matrices of dimensions of nXb,, rXb,,

]F(t)[E1 E,] (2>

b, Xn, b, Xk respectively. F(¢)€ R"*% is an unknown matrix function in unit ball;

FT(OF() <1 Ve (3
We need to design a compensator C;

X =AX®+BY®, X(0)=0 (4.a)

U@ = K.X.(®), 4.b)

such that the transfer function T (s) from noise W to controlled output Z to satisfy the
requirement
TN <7 (5
where 7 is a small positive real.
The closed loop system composed of P and C can be written in a compact form
¢ = (A, + HFE)¢ + BW (6.a)
Z=C¢ (6.b)
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w~here

X
- [X] o

X,
m A BK,
A = ‘_ ] (8.a)
B.C A, + B.DK,
rB,
B = l. } (8.b)
B.D,
C.=[C, D,K.]] (8.¢)
rH, 1
H, o= | | (8.d)
LB.H,
E = [E, E)K.] (8.¢)
Thus the transfer function from W to Z is
T() =C[sI — (A + HFE)]'B, (9)

The fact of plant P and closed loop transfer function 7°(s) containing an unknown
F, causes many difficulties for further handling. To overcome it, we can consider a plant

P; with a positive real ¢

X=AX + BU + [B, Y8 'H, W (10. 2)

Y=CX+ DU+ [D, Y6 'H,TW (10.b)

_ C. e D, 'l ,

Z = [BEJX + [SEZJ( (10.¢)
P; will become the same as P when putting

. r W

w amn

B l_67"F(E17( + E,U)
in (10), but it is helpless for solving the problem. Therefore we will consider W as a
bounded noise. and will not restrict W in (11) form.

Applying the compensator C to the plant P;, the closed loop system composed of

(4) and (10) can be written as

¢= AE+ BW (12.a)
Z=C¢t (12.b)
where
rx
7 } 3.
\-Xc (13.a)
B, =[B. 76"'H,] (13.b)
_ C -
C = [ o (13.0)
SE,
The transfer function from noise W to extended controlled output Z is
Ts(s) =C.(sf — A)'B, 14)
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Lemma 1

Linear system

R(s) =C(sI — A)™'B (15)
satisfies H.. norm inequality

R <7, (16)
If and only if there exists a positive symmetric matrix X satisfying Riccati inequality

ATX + XA+ C'C + 7 *XBB"X <0 an

Proof. It is from the book of Francis'.
Theorem 1
I there exists a positive real 8 and a compensator C for the scaled plant P;, such

that the Transfer function T;(s) of closed loop composed of P;and C satisfies

1Tl <7 (18)
then the transfer function T'(s) of closed loop composed of P and C will satisfy
1T <7 a9

Proof. If (18) exists,applying lemmal to (18), There exists a positive symmtric matrix
X satisfying
C.r C.
ATX + XA, + [ :| [ :]—{— Y:X[B, Y6'H.[B, Yé'H. "X <0 (20)
SE.J LOE,
Now notice
ETFTH'X + XH FE, << 6" 2XH H'X + S*ETF'FE, < §"*XH HTX + S*ETE,
@y
then we have
(A, + HFE)™X + X(A, + HFE) 4+ C'C. + 7 *XB.BTX =0 22)
Then applying lemmal agaim, (19) is proven.

3 Complete solution set of the problem

Theorem 1 tells us that the solvability of regulation problem (18) of scaled plant P;
can guarantee the regulation of uncertain plant P to satisfying (19). In the scaled plant
P, there is no any uncertain parameters except an artificial scale parameter 8. Thus we
can solve problem (18) in the framework of H.. standard problem. To normalize the

problem, we introduce a new noise

W =W (23)
the closed loop transfer function from W to Z is
Ts(s) = 77T (s) (24)
Thus the problem (18) becomes a normalized problem
IT:() . <1 (25)

It can be put into the framework of H.. standard problem.
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G(s)

Fig 1 Generalized plant of H.. standard problem

The expression in state space of transfer function of generalized plant from

MEHE

-1 ] o o}
G(s) =<A, (B, B,], , (26)
c, D,, D,
where
B, = (Y'B, &'H,] (27.2)
B,=B (27.b)
C.
¢ = li(?EJ (27.¢)
C,=C (27.d)
D, =0 (27.¢)
D,
D,, = [8Ej (27.)
D, =[r"'D, ¢'H,] (27.8)
D,, =D (27.h)

Suppose (A, B,) is stabilizable and (C,, A) is detectable. There exist matrices M
and N such that

A, = A+ B,M (28.a)

A, = A+ NG, (28.b)
are stable. The Youla free parameter Q is related to the compensator C is following way

C)=(Z,Q+ Z)(ZQ+ Z,)™", QE HY @29

and that causes T;(s) internal stable, where

Zn ZyT M -1, 0
Z(s)={ J: A, —[B, NI, { J [ } (30)
221 Zzz Cz + DzzM - Dzz Ir

Now (24) becomes

Ts(s) = T,(s) — T()RQITH(s) (31
and (25) becomes a normalized model-Matching problem
”T](S) - TZ(S)Q(S)TJ(S)”N < 1, Q - Hé:rv (32)

The expressions in state space of T, T,, T are
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[T, TZJ [A + B,M — BM } [ B, Bz}
T, 0 ‘% 0 A+ NC,)' LB+ ND, ol
[Cl + Dle - Dle:I [Dn Dlz:l}

0 C, D, o0

The complete solutions of the normalized model matching problem (32) can be fig-

(33

ured out in following way. First try to find a normalized left annihilator V,(s) of T,(s),
and a normalized right annihilator V,(s) of T;(s). They will be used to construct (J,

J’) unitary matrix

V. 1T,V,
@o = [7‘1\7'“ Vb :I (34)
to satisfy the (J, J’) unitary relation
B,J0, = J’ (35)

then try to find ®,, a J-orthogonal complement of ®,. And then try to find unimodular
matrix II, from the basic relation
- Tz 0 I - T]
=T o) [f T ”
0 1 0o T,
where unimodular matrix means that all the poles and zeroes of the matrix are in left

half plane. (36) is called J-lossless factorization. Divide the unimodular matrix I, into

four blocks properly,

I, I,
HZI HZ?. r
& r
and also divied ®, into four blocks properly
T8, 0,777
621 022 m+bl
k r
then the solution set of normalized model matching problem (32) is
Q= (H11¢+H12) (H21¢+H22)_1; ¢€' BH;Xr (39)
and the result transfer function of regulated error is
Ts(s) =7 [ﬁn¢ + 612 TlVb][621¢ + 622 Vb]_l (40)
From (29), we can define a matrix L=2ZII,, and divide it into four blocks properly
L, L,
L=ZHa=[ B ”} 41
LZI LZZ r
& r
At last we will find that the expression of solution set for the compensator C is
C= WL+ L)Ly P+ Ly 'y &€ BHY (42>

Now we are going to calculate all of these cxplicitly according to above statement.
The result of Kimura,Lu and Kawatani® on H., standard control problem is a nice refer-
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ence for our calculation, but they only consider the case of D,,=0 for simplicity. In our
problem we must consider a more general case since in (27. h) D;;=D50. Our results
also reveal several mistakes of [3]. We will only list results at maim steps since the cal-
culation is evey cumbersome.

Choose a left inverse Dy, and a left annihilator Di; of D, to satisfy

Dy, TYDLT 10
D (D, - Dy, D\}) Dy, ] = o I1J 43)
and choose a right inverse D} and a right annihilator Dj; of D, to satisfy
D, } I o
by pi-[! °] w
e — pipy, 26 PAI= [0

Next step is to find the normalized left annihilator V,(s). Define
A, = A — B,D},C, (45)
It is important to avoid the stable zeroes of T',(s) appearing in &, through (36), we need
to get rid of all undetectable stable modes of (D&C,, A.), since the zeroes of T, (s) must

be unobservable modes of (D&C, s A,). To this aim we can take a similarity transforma-

tion
T [R"}T' [R, N.] (46)
a — ’ « = a a 4
N,
where N, is the largest subspace satisfying
R,A, 7. .
I: }Nu =0 and N,A,N, stable “n
DiCy

Thus we only need to solve the Riccati equation of lefted part after getting rid of N,
(RARDX, + X, (RARDT + (X,(DLC,R)T + R,B,D|Di;™)
((Dlliclka)xa + DﬁD“B,TRI) + Ra((Bl - BzDrzDu)(Bl - BzD;LzDu)T

— B,D};DY,"B] )R] =0 (48)
and find a symmetric solution X, of (48) such that
A, = R,A,R, — KT D&C,R, 49
is antistable, where
K, =— DLC,R, X, — DD, BTRT (50)
The normalized left annihilator V,(s) is
V.= {A., — (KID} + R.B,D},), D§CiR,, Dis) (51)
Similarly, to find the normalized right annihilator V, (s), we define
A, = A — B, DJC, (52
To get ride of all stable zeroes of T;(s), we can take a similarity transformation
~ ~ Rb
Ty=[R Ny, T;'= [ } (53)
N,

where N, is the largest subspace such that
98



N,AR, BDil=0 and N,A,N, stable (54)
Thus we only need to solve the Riccati equation of lefted part after getting rid of N,,
X,(RAR) + (RAR)TX, + (X,(RB,DE) + RICI Dy, D5
((RB,D})T X, + D4DJ\C,R,) + R} ((C, — D;,D}C,)T(C, — Dy D;iCy)

— CIDHTD}CHR, = 0 (55)
and find a symmetric matrix X, such that
A, = R,A,R, — R,B,D}K, (56)
is antistable, where
K, = (— X,R,B,D4 — RJCTD,D{T (57)
The normalized right annihilator V,(s) is
V, = {A,, RB, D}, — (DK, + DHC,R)), Df) (58)

From the expressions of V,(s) and V,(s), we can write an explicit expression of &,
by (34), and compute the explicit expression of &, a J-orthogonal complement of 8,.
And then calculate the explicit expression of II, by (36), at last get L from (30) and
(41). We can prove that the resulted II, is unimodular. All these computations are ma-
trix calculations in state space intrinsically. We only write the last results,since the com-
putation burden in huge and the space is limited. They can be summarized in theorem 2.

Theorem 2
The solvability condition of H.. regulation problem (18) of scaled plant P;is

[ X, R,,Ié,,]> (59)
. 0 5
RIR] X, 17
The explicit expression of complete solution set for it’s compersator is
C=WP+L)ULyP+ L)', &€ BHY (60)
where L,, are the four blocks of L in (41)
L= {ALv BL? CL9 DL} (61)
rN,AN, — NA.R.X,+ G.LT + G,M})>
AL = N } (62 a)
L 0 — RT(AJR] — CIDLETKY)
rN, 0 N,RI X. RARI'TL., — M,
B.=[ "6 cp. - | 1. 1 In.
Lo 1 0 TR  Z, M, —1L,
(62.b)
r — DiC N . DY, — DD 0o LT
CL — 21 1+ }[Na . RaXa] + [ 12+ 12 1:- ][ T]
'Cz - DZZDIZCl Dzlez D21 - DzlezDu 0 Ma
(62.¢)
DY, — Dj,
DL — [ '12+ 12 l:- } ) (62-d)
Dzlez D21 - DzlezDu
and
G, = B,D}, (63.a)
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G, = B, — B,D}",D,; (63.b)

L, = K] D} + R,G, (63.¢)
M, =— R,B, + LD, (63.d)
L, = KJD4T + RJCI DT (63.¢e)
M, =— RJC] + L,D}, (63.1)

DJ.T D DT
Do _ 1: 2 11 21} (63.g)

D\DLT Dg
4 Conclusion

In this paper we have solved the control problem for linear system with part uncer-
tain parameters under bounded noise. The effect of parameters uncertainty can be con-
verted to an equivalent effect ofja new set of bounded noise. Thus above problem can be
converted into a H., control problem of a scaled difinite system under an extended
bounded noise. Then we have dealt with the H., standard problem of four blocks in gen-
eral case (D, 70), and further obtained the explicit formulas of complete solution set
for the parameter robust control problem. These formulas are related to the contolled
plant parameters and design parameters directly, and can be programmed on computer
conveniently.

In summary, this paper is concerned with parameter robust control problem which
appears in many engineering design tasks,and gives the explicit formulas of complete so-
lution set. These results will be with a good prospect in practical engineering applica-

tions.
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