$$|f(x_j) - f(y_j)| \le \frac{2\lambda_n^2 \operatorname{dia}^2(D')}{\left[\frac{2}{3}R\right]^{(KM)^{1/1-n}} \operatorname{dia}(f(A))} \left[\frac{1}{4}R\right]^{(KM)^{1/1-n-a}} |x_j - y_j|^a$$

(b') $\gamma_j \not\subset \overline{D}$. Then $\gamma_j \cap \partial D \neq \emptyset$ and there exist at least two points of $\gamma_j \cap \partial D$. Let x_j and y_j be the nearest points from x_j and y_j respectively. Denote by ξ_j and η_j the open segments joining x_j to x_j and y_j to y_j respectively, then $\xi_j \subset \overline{D}$ and conclude that there exists constant M' > 0 satisfying

$$|f(x_i) - f(y_i)| \le M' |x_i - y_i|^{\alpha}$$
 (3.12)

If $|x_j - y_j| \ge \frac{R}{4}$, then by the boundness of D' we have

$$|f(x_j) - f(y_j)| \le \frac{\operatorname{dia}(D')}{(\frac{1}{4}R)^a} |x_j - y_j|^a$$
 (3.13)

According to the above discuss, we conclude that there exists constand M>0 satisfying $|f(x_j)-f(y_j)|/|x_j-y_j|^a \le M$ for sufficient large j, this contradicts with $|f(x_j)-f(y_j)|/|x_j-y_j|^a \to \infty$. Thus $f \in Lip_a(D)$.

We wish to thank professor A. N. Fang and professor J. M. Wu for their encouragement to write this paper.

References

- Gehring F W. Martio O. Lipschitz classes and quasiconformal mappings. Ann Acad Sci Fenn Ser Math, 1988, 10:203~219
- 2 Gehring F W, Hayman W K, Hinkkanen A. Analytic functions satisfying Hölder conditions on the boundary. J Approx Theory, 1982, 35:353~361
- 3 Väisälä J. Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Math, Springer-Verlag, Berlin and New York, 1971, 229
- 4 Gehring F. W. Rings and quasiconformal mappings in space. Trans Amer Math Soc, 1962, 103
- 5 Vuorinen M. Conformal geometry and quasiregular mappings. Lecture Notes in Math. Springer -- Verlag, Berlin and New york, 1988, 1319
- 6 Gehring F W. Symmetrization of rings in space. Trans Amer Math. Soc 1961,101,499∼519

拟共形映照和 Hölder 连续性

褚玉明 周海银

(系统工程与数学系)

摘 要 设 $f \not\in R$ " 中的域 D 到有界的 M-QED 域上的 K- 拟共形映照, $0 < \alpha \le (KM)^{1/1-n}$. 在本文中作者证明了 $f \in Lpi_{\alpha}(\partial D)$ 的充要条件是 $f \in Lpi_{\alpha}(D)$ 。

关键词 *K*-拟共形映照,模,*M*-*QED*域,*Hölder*连续 分类号 O174.55

(责任编辑 潘 生)

Quasiconformal Mappings and Hölder Continuity*

Chu Yuming Zhou Haiyin

(Department of System Engineering And Mathematics NUDT, Changsha, 410073)

Abstract Let f be a K-quasiconformal mapping which maps $D \subseteq R^n$ onto bounded M-QED domain $D' \subseteq R^n$, $0 < \alpha \le (KM)^{1/1-n}$. In this paper, the authors proved that $f \in \text{Lip}_{\alpha}$ (∂D) if and only if $f \in \text{Lip}_{\alpha}$ (D).

Key words K-quasiconformal mappings, module, M-QED domain, Hölder continuity

1 Introduction

In this paper, we shall adopt the standary notation $f \in Lip_{\alpha}$ (A) and definition M-QED domain in [1].

F. W. Gehring, W. K. Hayman and A. Hinnkanen established the following theorem in [2]:

THEOREM A Suppose that D, D' are Jordan domains in \overline{R}^2 , f is a conformal mapping which maps D onto D', $0 < \alpha \le 1$, If $f \in Lip_\alpha$ (∂D) , then $f \in Lip_\alpha$ (D).

In this paper, we shall extend the above result to quasiconformal mapping and obtain the following result:

THEOREM 1 Suppose that $D \subset R^n$ is a domain, $D' \subset R^n$ is a bounded M - QED domain, f is a K-quasiconformal mapping which maps D onto D', $0 < \alpha \le (KM)^{1/1-n}$, If $f \in Lip_{\alpha}(\partial D)$, then $f \in Lip_{\alpha}(D)$.

2 Preliminary knowledge

we shall adopt the relatively standary notation and terminology of [3]. Unit vectors in the directions of the rectangular coordinate axes in R^n are denote by e_1, e_2, \dots, e_n . For $x \in R^n$ and r > 0, we let B^n $(x, r) = \{z \in R^n : |z-x| < r\}$, S^{n-1} $(x, r) = \partial B^n$ (x, r), $B^n(r) = B^n(0,r)$, $B^n = B^n(1)$. We follow. J. Väisälä's definition of K-quasiconformality [3] which is also equivalent to $K^{1/n-1}$ -quasiconformality in the definition given

This research was supported by the P. R. China National Science Foundation. Received 20 June 1995

by F. W. Gehring [4].

The Grötzsch ring domain. For $0 < r < \infty$, let

 $R_G(r) = B^n \setminus \{ (x_1, x_2, \dots, x_n): 0 \le x_1 \le r, x_2 = x_3 = \dots = x_n = 0 \}.$ The domain $R_G(r)$ is called the Grötzsch ring domain corresponding to r. Let $\mu_G(r)$ denote the modulus of the family of arcs joining the boundary components of $R_G(r)$. Then (see [5])

$$\mu_G(r) = \frac{\omega_{n-1}}{\left[\log \Phi(\frac{1}{r})\right]^{n-1}} \tag{2.1}$$

where $\omega_{n-1} = m_{n-1}$ (S"-1). Using the inequality of F. W. Gehring in [6]

$$\alpha \leqslant \Phi(a) \leqslant \lambda_n a \tag{2.2}$$

we obtain from (2. 1)

$$\frac{\omega_{n-1}}{(\log \frac{\lambda_n}{r})^{n-1}} \leqslant \mu_G(r) \leqslant \frac{\omega_{n-1}}{(\log \frac{1}{r})^{n-1}}$$

$$(2.3)$$

where $\lambda_n \in [4, 2e^{n-1}]$ is the Grötzsch constant.

The Teichmller ring domain. For r>0 let

$$R_T(r) = \overline{R}^n \setminus \{(x_1, x_2, \dots, x_n): -1 \leqslant x_1 \leqslant 0 \text{ or } r \leqslant x_1 < \infty,$$

$$x_2 = x_3 = \dots = x_n = 0\}.$$

The domain R_T (r) is called the *Teichmüller ring domain* corresponding to r. Let μ_T (r) denote the modulus of the family of arcs joining the boundary components of R_T (r). Then (see [5])

$$\mu_T(r) = 2^{1-r} \mu_G \left[\sqrt{\frac{1}{1+r}} \right]$$
 (2.4)

By (2. 3) and (2. 4) we can obtain

$$\frac{\omega_{n-1}}{\lceil \log \lambda_n^2 (1+r) \rceil^{n-1}} \leqslant \mu_{T_n}(r) \leqslant \frac{\omega_{n-1}}{\lceil \log (1+r) \rceil^{n-1}}$$
 (2.5)

Next let $D \subset R^n$ is a bounded M - QED domain, E, F are two disjoint continua in closed sets D, the lower bound estimate of mod $[\triangle (E, F; D)]$ play an important role in the proof of theorem 1. Now let us estimate it's lower bounded.

Since *D* is bounded, hence both *E* and *F* are bounded also, taking $a, b \in E$, $c, d \in F$ such that dia(E) = |a-b|, dia(F) = |c-d|, by [5, 7.35] we have

$$\operatorname{mod}[\triangle(E,F;\overline{R}''] \geqslant \mu_T \left(\frac{|a-c||b-d|}{|a-b||c-d|} \right) \tag{2.6}$$

Combining (1.2), (2.5) and (2.6) we get

$$\operatorname{mod}\left[\triangle(E,F;D)\right] \geqslant \omega_{n-1}/M\log\left[\frac{2\lambda_{n}^{2}\operatorname{dia}^{2}(D)}{\operatorname{dia}(E)\operatorname{dia}(F)}\right]^{n-1}$$
(2.7)

3 Proof of theorem 1

Suppose that $f \notin Lip_a(D)$, then there exist sequences $\{x_j\}$ and $\{y_j\}$ in D such that 120

$$\frac{|f(x_j) - f(y_j)|}{|x_i - y_i|^a} \to \infty, \quad \text{as } j \to \infty.$$

If at least one of the sequence $\{x_j\}$ and $\{y_j\}$ is bounded, without loss of generality, we may assume $\{x_j\}$ is bounded. Then there exist a subsequence of $\{x_j\}$, still denote by $\{x_j\}$ such that $x_j \rightarrow x_0 \in \overline{D}$ as $j \rightarrow \infty$ There are following two cases:

(i) $x_0 \in D$, let $d_1 = dist(x_0, \partial D)$, taking j sufficient large such that dist $(x_j, \partial D) > \frac{7}{8}d_1$.

If
$$|x_j - y_j| < \frac{1}{4}d_1$$
, let $0 < \varepsilon < \frac{1}{2}|x_j - y_j|$, $R = B^n(x_j, \frac{7}{8}d_1 - \varepsilon) \setminus \overline{B}^n(x_j, |x_j - y_j| + \varepsilon)$

 $\subset D$, Γ denote the family of arcs joining $B^n(x_j,|x_j-y_j|+\varepsilon)$ and $D\setminus B^n(x_j,\frac{7}{8}d_1-\varepsilon)$ in

D. Then by [4, 5.10], (2.7) and the K-quasiconformality of f, we have

$$\frac{1}{KM} \frac{\omega_{n-1}}{\left[\log \frac{2\lambda_n^2 \operatorname{dia}^2(D')}{\operatorname{dia}(D') | f(x_j) - f(y_j)|}\right]^{n-1}} \leqslant \operatorname{mod} \Gamma = \frac{\omega_{n-1}}{\left[\log \frac{7}{8} d_1 - \epsilon | \log \frac{7}{|x_j - y_j| + \epsilon}\right]^{n-1}}$$
(3.1)

and hence

$$|f(x_{j}) - f(y_{j})| \leq \frac{2\lambda_{n}^{2} \operatorname{dia}(D')}{\left[\frac{d_{1}}{2}\right]^{(KM)^{1/1-n}}} |x_{j} - y_{j}|^{(KM)^{1/1-n}}$$

$$\leq \frac{2\lambda_{n}^{2} \operatorname{dia}(D')}{\left[\frac{d_{1}}{2}\right]^{(KM)^{1/1-n}}} \left[\frac{d_{1}}{4}\right]^{(KM)^{1/1-n-\alpha}} |x_{j} - y_{j}|^{\alpha}$$
(3. 2)

If $|x_j-y_j| \geqslant \frac{1}{4}d_1$, then by the boundedness of D', we have

$$|f(x_j) - f(y_j)| \le \frac{2\lambda_n^2 \operatorname{dia}(D')}{\left(\frac{1}{2}d_1\right)^{\alpha}} |x_j - y_j|^{\alpha}$$
 (3.3)

(ii) $x_0 \in \partial D$, fixed a continuum $A \subset D$, let $d_2 = dist(A, \partial D)$, taking j sufficient large such that dist $(x_1, A) > \frac{7}{8}d_2$.

If
$$|x_j-y_j| < \frac{1}{8}d_2$$
, let $0 < \varepsilon < \frac{1}{2}|x_j-y_j|$, $R = B''(x_j, |x_j-y_j| + \varepsilon) \setminus \overline{B}''(x_j, |x_j-y_j|)$

 $+\frac{1}{2}\varepsilon$), then R separates points x_j, y_j and A in \overline{R}^n , let γ_j be the open segment joining x_j and y_j . Then there are two cases:

(a) $\gamma_j \subset \overline{D}$. let A_j be the component of $D \setminus R$ which contain x_j and y_j , then by (2.7), the K-quasiconformality of f and the compare principle of modulus we get

$$\frac{1}{KM} \frac{\omega_{n-1}}{\left\lceil \log \frac{2\lambda_n^2 \operatorname{dia}^2(D')}{\operatorname{dia} f(A) \left| f(x_i) - f(y_i) \right|} \right\rceil^{n-1}} \leqslant \operatorname{mod}[\triangle(A, A_j; D)]$$

$$\leq \frac{\omega_{n-1}}{\left[\log \frac{\frac{7}{8}d_2 - \epsilon}{|x_j - y_j| + \epsilon}\right]^{n-1}} \leq \frac{\omega_{n-1}}{\left[\log \frac{\frac{1}{2}d_2}{|x_j - y_j|}\right]^{n-1}}$$
(3.4)

and hence

$$|f(x_{j}) - f(y_{j})| \leqslant \frac{2\lambda_{n}^{2} \operatorname{dia}^{2}(D')}{\left[\frac{1}{2}d_{2}\right]^{(KM)^{1/1-n}} \operatorname{dia}(f(A))} \left[\frac{1}{8}d_{2}\right]^{(KM)^{1/1-n-a}} |x_{j} - y_{j}|^{a}$$

(3.5)

If $|x_j-y_j| \geqslant \frac{1}{8}d_2$, then by the boundedness of D' we have

$$|f(x_j) - (y_j)| \le \frac{\operatorname{dia}(D')}{(\frac{1}{8}d_2)^{\alpha}} |x_j - y_j|^{\alpha}$$
 (3.6)

(b) $\gamma_j \not\subset \overline{D}$, then $\gamma_j \cap \partial D \neq \emptyset$ and there exist at least two points of $\gamma_j \cap \partial D$. Let x_j' and y_j' be the nearest points from x_j and y_j respectively, c_j be the open segment joining x_j to x_j' , d_j be the open segment joining y_j to y_j' , then $c_j \subset \overline{D}$ and $d_j \subset \overline{D}$, the detail proof similar to (a), we can prove that there exist constant M_1 and M_2 satisfying

$$|f(x_i) - f(x_i')| \le M_1 |x_i - x_i'|^a \le M_1 |x_i - y_i|^a$$
 (3.7)

$$|f(y_j) - f(y_j')| \le M_2 |y_j - y_j'|^a \le M_2 |x_j - y_j|^a$$
 (3.8)

since $f \in Lip_a(\partial D)$, hence there exists constant $M_3 > 0$ satisfying

$$|f(x_j') - f(y_j')| \le M_3 |x_j' - y_j'|^{\alpha} \le M_3 |x_j - y_j|^{\alpha}$$
(3.9)

Combining (3.7), (3.8), (3.9) and by the triangle inequality we have

$$|f(x_j) - f(y_j)| \le (M_1 + M_2 + M_3)|x_j - y_j|^{\alpha}$$
 (3.10)

If sequences $\{x_j\}$ and $\{y_j\}$ are both unbounded, then then exist subsequence $\{x_j'\} \subset \{x_j\}$ and $\{y_j'\} \subset \{y_i\}$ such that $x_j' \to \infty$ and $y_j \to \infty$ as $j \to \infty$. For convinence, we still instead $\{x_j\}$ for $\{x_j'\}$ and $\{y_j\}$ for $\{y_j'\}$.

Fixed a continuum $A \subset D$, let R > 0 be sufficient large, such that $A \subset B^{n}(R)$, let j be sufficient large such that $x_{j}, y_{j} \in B^{n}(2R)$.

First we assume $|x_j - y_j| < \frac{1}{4}R$, taking $0 < \varepsilon < \frac{1}{2}|x_j - y_j|$, $R_j = B''(x_j, |x_j - y_j|) + \varepsilon \setminus \overline{B}''(x_j, |x_j - y_j|) + \frac{1}{2}\varepsilon$, let γ_j be the open segment joining x_j to y_j , then there are two cases:

(a') $\gamma_i \subset \overline{D}$. Let A_i be a component of $D \setminus R$, which contain x_i and y_i , Γ_i denote the family of arcs joining A and A_i in D, then we have

$$\frac{1}{M} \frac{\omega_{n-1}}{\left(\log \frac{2\lambda_n^2 \operatorname{dia}^2(D')}{\operatorname{dia}(f(A)) | f(x_j) - f(y_j)|}\right)^{n-1}} \leqslant K \operatorname{mod} \Gamma \leqslant \frac{K\omega_{n-1}}{\left(\log \frac{2R}{3|x_j - y_j|}\right)^{n-1}} \tag{3.11}$$

and hence

$$|f(x_{j}) - f(y_{j})| \leq \frac{2\lambda_{n}^{2} \operatorname{dia}^{2}(D')}{\left\lceil \frac{2}{3}R \right\rceil^{(KM)^{1/1-n}} \operatorname{dia}(f(A))} \left[\frac{1}{4}R \right]^{(KM)^{1/1-n}-\alpha} |x_{j} - y_{j}|^{\alpha}$$

(b') $\gamma_j \not\subset \overline{D}$. Then $\gamma_j \cap \partial D \neq \emptyset$ and there exist at least two points of $\gamma_j \cap \partial D$. Let x_j and y_j be the nearest points from x_j and y_j respectively. Denote by ξ_j and η_j the open segments joining x_j to x_j and y_j to y_j respectively, then $\xi_j \subset \overline{D}$ and conclude that there exists constant M' > 0 satisfying

$$|f(x_i) - f(y_i)| \le M' |x_i - y_i|^a$$
 (3.12)

If $|x_j - y_j| \ge \frac{R}{4}$, then by the boundness of D' we have

$$|f(x_j) - f(y_j)| \le \frac{\operatorname{dia}(D')}{(\frac{1}{4}R)^a} |x_j - y_j|^a$$
 (3.13)

According to the above discuss, we conclude that there exists constand M>0 satisfying $|f(x_j)-f(y_j)|/|x_j-y_j|^a \leq M$ for sufficient large j, this contradicts with $|f(x_j)-f(y_j)|/|x_j-y_j|^a \to \infty$. Thus $f \in Lip_a(D)$.

We wish to thank professor A. N. Fang and professor J. M. Wu for their encouragement to write this paper.

References

- 1 Gehring F W. Martio O. Lipschitz classes and quasiconformal mappings. Ann Acad Sci Fenn Ser Math, 1988, 10:203~219
- 2 Gehring F W, Hayman W K, Hinkkanen A. Analytic functions satisfying Hölder conditions on the boundary. J Approx Theory, 1982, 35:353~361
- 3 Väisälä J. Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Math, Springer-Verlag, Berlin and New York, 1971, 229
- 4 Gehring F. W. Rings and quasiconformal mappings in space. Trans Amer Math Soc, 1962, 103
- 5 Vuorinen M. Conformal geometry and quasiregular mappings. Lecture Notes in Math. Springer -- Verlag, Berlin and New york, 1988, 1319
- 6 Gehring F W. Symmetrization of rings in space. Trans Amer Math. Soc 1961,101,499∼519

拟共形映照和 Hölder 连续性

褚玉明 周海银

(系统工程与数学系)

摘 要 设 $f \in R^n$ 中的域 D 到有界的 M-QED 域上的 K- 拟共形映照, $0 < \alpha \le (KM)^{1/1-n}$. 在本文中作者证明了 $f \in Lpi_{\alpha}(\partial D)$ 的充要条件是 $f \in Lpi_{\alpha}(D)$ 。

关键词 K-拟共形映照,模,M-QED域, $H\"{o}lder$ 连续

分类号 O174.55

(责任编辑 潘 生)