2Xdia® (D) 1,
o k! 7R lz, — 31"

E—R] dia (f(A))

|f(xp) — flyp| <

3
(b') 7,&D. Then 7;(10D# & and there exist at least two points of ¥;(1&D. Let
x;and y; be the nearest points from z; and y, respectively. Denote by & and 7, the open
segments joining x, to x;and y, to ¥, respectively, then &,CD and conclude that there ex-

ists constant M’ >0 satisfying

| fx) — fd| <Mz, — y;]° (3.12)
If l:r,——y,l}%, then by the boundness of D' we have
Fay = Fopl <B4y e (3.13)
(ZR)"

According to the above discuss, we conclude that there exists constand M>>0 satis-
fying |f(x)—f(y) |/ |z;—y,|°<M for sufficient large j, this contradicts with | f(x,)
—=F )|/ z;—y;|*>co. Thus f€ Lip.(D).

We wish to thank professor A. N. Fang and professor J. M. Wu for their encourage-

ment to write this paper.
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Quasiconformal Mappings and Hélder Continuity”

Chu Yuming Zhou Haiyin

(Department of System Engineering And Mathematics NUDT, Changsha, 410073)

Abstract Let f be a K—quasiconformal mapping which maps DCR” onto
bounded M—QED domain D' CR", 0<la<{ (KM)"'"", In this paper, the au-
thors proved that f€ Lip, (9D) if and only if f€ Lip. (D).

Key words K — quasiconformal mappings, module, M —QED domain,

Hélder continuity
1 Introduction

In 'this paper, we shall adopt the standary notation { € Lip, (A) and definition M—
QED domain in [1]. . .

F. W. Gehring, W. K. Hayman and A. Hinnkanen established the {following theorem
i’n [2].
THEOREM A Suppose that D, D' are Jordan domains in R?, f is a conformal mapping
which maps D onto I , 0<la<(1, If f€ Lip, (OD), then f€ Lip, (D).
’ In thi§ paper, we shall extend the above result to quasiconformal mapping and ob-
tain the following result;

THEOREM 1 Suppose that DCR" is a domain, D'CR"is a bounded M—QED do-
main, f is a K—quasiconformal mapping which maps D onto D', 0<la<{ (KM)V'™", If
fE€ Lip, (3D), then fE€ Lip., (D).

2 Preliminary knowledge

we shall adopt the relatively standary notation and terminology of [3]. Unit vectors
in the directions of the rectangular coordinate axes in R* are denote by e,, ;5 **, e,. For
rER and »>0, we let B" (., ) = {z€R": |z—2|<r}, §" (2, r) =08 (zx,
7Yy B G =B"(0.r), B'=B"(1). We follow. J. Vaisala' s definition of K —quasiconfor-

mality [ 3] which is also equivalent to KY"~! —quasiconformality in the definition given

%_ This research was supported by the P. R. China National Science Foundation.
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by F. W. Gehring [4].
" The Grétzsch ring domain. For 0<(r<{oo, let
Re () =B\ { (x1s 25 ***» 1,):. 0y <y ;p=x3=-+=1x,=0}. The domain R;
(r) is called the Grotzsch ring domain corresponding to r. Let u; () denote the modulus
of the family of arcs joining the boundary components of R; (). Then (see [5])

W,

pe(r) = — 1 @.1n

: [log@(--)> ]!
where w,_;=m,_, (§"71). Using the inequality of F. W. Gehring in [6]

a<{ Pa) < Aa 2.2)
we obtain from (2. 1)
Db () < 2! (2.3)
A, 1.,
(log 7)" ! (log 7)

where 4,€ [4. 2¢"7']is the Grotzsch constant.,
The Teichmller ring domain. For >0 let
Rr(r) = R\{(x; 23+ 32,): — 1 <, L 0or r < a2y < o0,
X, =13 = e =z, = 0}.
The domain Ry (r) is called the Teichmiiller ring domain corresponding to r. Let pur

(r) denote the modulus of the family of arcs joining the boundary components of Rr
(). Then (see [5])

,UT(?’) = 21_"/10 —1——] 2.4
1+
By (2. 3) and (2. 4) we can obrain
o < () < 0 L (2.5)

[log® (1 + 17! Tog(1 + 1"
Next let DCR" is a bounded M —QED domain. E, F are two disjoint continua in
closed sets D, the lower bound estimate of mod [A (E, F; D)] play an important role
in the proof of theorem 1. Now let us estimate it’ s lower bounded.
Since D is bounded . hence both K and F are bounded also, taking a, b€ E, ¢, d€
F such that dia (E) =|a—0b|, dia (F) ={c—d]|, by [5, 7.35] we have

o la —¢||b —d})
mod[ACEF 3R 2 purl 1 0 ) (2.6)
Combining (1.2), (2.5) and (2. 6) we get
N - 2Adiat (D) !
mod[ A(EF:D)] = w,,,,l/Mlog[:(—iia—(E%m—F—)»] (2.7)

3 Proof of theorem 1

Suppose that f€& Lip. (D), then there exist sequences {x,} and {y,} in D such that
120



|f(i’6;1):£(l.3’,)| o0, as j-» oo

If at least one of the sequence {x;} and {y;} is bounded, without loss of generality,
we may assume {x;} is bounded. Then there exist a subsequence of {z;}, still denote by
{x;} such that x;/>x,€ D as j—>oo There are following two cases:

(i) x,€D, let d,=dist(x,,8D), taking j sufficient large such that dist (z;,0D)>

7
—8—d1.

If IIJ_yJ | <—i_d1 ’ let 0<E<-%— |.r_,——y_,| ’ R=B"(xj’%d1—'€)\gn(xj’ |IJ_yJ | +€)
C D, I denote the family of arcs joining B"(x;, |x;—y;| +€) and D\B"(x,-,%dl——e) in

D. Then by [4, 5.10],(2.7) and the K—quasiconformality of f, we have

1 w,_ ..
m lezdiazl(Dl) n—1 < modl” = 7 p 1 —
[1og dia(D) [ f(z) — (&) l] |:log ghme
lz; — ¥l + ¢
3.
and hence
28dia (D) .
FACHENICDI R 7%‘”'" Iz, — 5, | K"
a,
2
Aﬁd. D[ d (KM)‘I/I-—n_a 4
<_22_1E§7>_2_[Il1 |z, — ,1° (3.2)
et |
%]
If lx,_y;|>%d1 » then by the boundedness of D', we have
Axdia (D
|f(1,)—f(yj)|<2_"1M_|Ij_yj|‘z G 1
24 |

(ii) x,€9D, fixed a continunm ACD, let d;=dist(A,0D), taking j sufficient large

such that dist (1,,A)>%dg.
If |1‘j—y,|<—é—d2. let O<e<—;— lzj—y;ls R=B"(z;.|z,— y;| +\B"(z;. | z,— 3, |

+—12~e) , then R separates points z;,y,and A in R", let 7, be the open segment joining z,

and y,. Then there are two cases:
(a) 7,CD. let A, be the component of D\R which contain x; and y,, then by (2.

7), the K—quasiconformality of f and the compare principle of modulus we get

1 @1 ;
KM [10 oxdiat (D) ]1 <mod[A(4,4,;D)]
Ediaf (A | f(z,) — F )]
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W, w,

— < 1""‘ — (3.4)
2%
: |

og —2
g|-73j—yj

<

| Log e
|z; — ;| +¢
and hence

) Zkidiaz(D’ ) 1 (KM)”]_"—"

If(l'j) - f(y,)l < (KL= _dz Ixj - yjla
Sd| diaGreay -
(3.5
If lz,-—y,-l?%dz, then by the boundedness of D' we have
S ‘
£ — ol <L ) (3.6)
(gdz)a .

(b) 7,&D, then 7,19D+# & and there exist at least two points of 7;(13D. Let x;
and y; be the nearest points from z; and y, respectively, c; be the open segment joining z;
to z;, d; be the open segment joining y, to y;, then ¢;CD and d,CD, the detail proof

similar to (a), we can prove that there exist constant M, and M, satisfying

[fx)) — fap| <Mz, — 251" <M, |z; — y,]° Q.7

| f ) — ORI < M ly; — 51" < Mp |z — y51° (3.8)
since f€ Lip.(3D), hence there exists constant M;>>0 satisfying

|f(.r;) — f(yl;)l <M311'/;—ylj|a<M3|xj_yj|a 3.9
Combining (3.7),(3.8).(3.9) and by the triangle inequality we have

| fx) — Fp] < (M, + M, + My)|z; — y,]° (3.10)

If sequences {x;} and {y,} are both unbounded, then then exist subsequence {x;}C
{z;} and {y,}C{y.} such that z,—>cc and y,—>cc as j—>oo, For convinence, we still in-
stead {x;} for {x,} and {y,} for {y;}.

Fixed a continuum ACD,let R>0 be sufficient large, such that ACCB"(R), let j be
sufficient large such that x;,y,& B"(2R).

First we assume |x,—y,—|<%R, taking O<e<% lx,—y;ils Ry=B"(x, |z;—y,|+

e\B"(x,, |x,—y,] —i—%'e) » let 7, be the open segment joining x, to y,,then there are two
cases:

(a') 7,CD. Let A, be a component of D\R, which contain x, and y,,I", denote the

family of arcs joining A and A; in D, then we have

l W, Kw,,~—1
M oxdia’ (D) 1 < Kmodl' < N
EFa(f (AN [ F(z) — TG €37z, = 1

3.1D

and hence
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2Xdia® (D) 1,
o k! 7R lz, — 31"

E—R] dia (f(A))

|f(xp) — flyp| <

3
(b') 7,&D. Then 7;(10D# & and there exist at least two points of ¥;(1&D. Let
x;and y; be the nearest points from z; and y, respectively. Denote by & and 7, the open
segments joining x, to x;and y, to ¥, respectively, then &,CD and conclude that there ex-

ists constant M’ >0 satisfying

| fx) — fd| <Mz, — y;]° (3.12)
If l:r,——y,l}%, then by the boundness of D' we have
Fay = Fopl <B4y e (3.13)
(ZR)"

According to the above discuss, we conclude that there exists constand M>>0 satis-
fying |f(x)—f(y) |/ |z;—y,|°<M for sufficient large j, this contradicts with | f(x,)
—=F )|/ z;—y;|*>co. Thus f€ Lip.(D).

We wish to thank professor A. N. Fang and professor J. M. Wu for their encourage-

ment to write this paper.
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