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The Joint Estimation Approach of States and Parameters
for Liquid Rocket Engine Health Monitoring
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Abstract Based on a coventional Extended Kalman Filter ( EKF), a sub-eptimal
fading factor EKF is proposed in this paper, which can be used for the joint estimation
of states and parameters of nonlinear time-varying stochastic systems. It is used for
health monitoring in such a complex system as liquid rocket engine. Numerical simula—
tion result shows the proposed estimator has better properties such as convergence, real
time, and dynamic tracking ability etc.. In addition, some problems connected with the
joint estimation and the applicability for real plants are also discussed.
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1 Introduction

For flight of manned vehicles, Fault Detection and Diagnosis (FDD) of propulsion
system plays an important role in the safety and reliability of vehicles. In recent years,
the health monitoring of Liquid Propellant Rocket Engine (LRE) has been paid much at—
tention. Many kinds of FDD methods have been used in LRE monitoring system to im—
prove the safety and reliability of propulsion system, which include such approaches as
FDD based on signal processingl”, FDD based on analytical models'”" ' | and FDD based
on artificial intelligent|4]€t0 .- Some achievements have also been obtained in practical ap—
plication. But, in fact, for such a complex system as liquid propulsion system, fault isola—
tion and identification are still rather difficult tasks. Effective isolation and identification

methods are lacking, especially for nonlinear time—varying stochastic systems.
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For FDD of liquid rocket propulsion system, we think the methods based on analyti—
cal models including state estimation methods' " and parameter estimation methods'” are
worth our while, despite there are some problems and troubles in application. Regarding
fault isolation and identification for nonlinear systems, the parameter estimation methods
seem to be superior to state estimation methods' . If the parameters of nonlinear sys—
tems can be accurately estimated on-ine, it is very possible to adopt statistical methods
to isolate faults.

In this paper, the joint estimation of states and parameters for nonlinear stochastic
systems is considered, which maybe provide some valuable ideas for FDD of nonlinear
systems or real complex plants. To improve the robustness of the conventional Extended
Kalman Filter (EKF) on the mismatch of parameters of system models, inthe section on
theory and approach, a kind of suboptimal fading factor EKF is developed. Based on it,
the joint estimation approach is proposed. To verify the effectiveness of such an estima—
tor, in next section, the proposed approach is applied to the health monitoring of liquid
rocket engine with turbopump feed system. Numerical simulation result is given. Final-
ly, some related problems are discussed, and some ideas for further study are also pre-

sented.
2  Theory and approach

2.1 Suboptimal fadingfactor EKF
Consider the discretetime nonlinear dynamic system
x(k+ 1) = f(k,u(k),x(k) + T(k)w(k) } (0
y(k+ 1) = h(k+ 1,x(k+ 1)) + e(k+ 1)
where x (k) represents an ndimensional state vector, x  R", the inputu R’ the out—
puty R",f:R"x R - R", andh: R" - R" are nonlinear functions of the state, which
are at least once differentiable. w (k) and e( k) are Gaussian white noise with statistics:
Efw(k)} = Efe(k)} = 0
E{w(k)e' (k)} =0
E{w(k)w'(j)) = Q16
Ee(k)e'(j)) = Q200

where E{ } denotes the mathematical expectation, Onj is kronecker function, and Q1, Q2

(2)

are positive defined matrices. Also, the initial state vector, £(0) , is assumed to be a
Gaussian random vector with mean x0 and covariance P(0), so that
E([x(0) = x0][x(0) = x0] '} = P(0) (3)
x(0) is also assumed to be uncorrelated withw (%) and e(k) .
Based on the famous Extended Kalman Filter'”, a kind of subo ptimal fading-factor
EKF is developed, and is given with the form of recursive algorithms as follows:
x(k+ 1hk+ 1)= x(k+ 1 k) + K(k+ DXk+ 1) (4)
x(k+ 1k = f(k,u(k),x(k k)) (5)
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K(k+ 1)= P(k+ DH"(k+ 1,9;(19+ 1 E)V (k+ 1) (6)
P(k+ 1k)= Nk+ DF(k,u(k),x(k B))P(k k)F"(k,u(k).,x(k k)) + T(k)Q,(k)T"(k) (7)

~

Pk+ 1k+ 1)=[I- K(k+ DH(k+ La(k+ 1 B)P(k+ 1 k) (8

w here - N
V(k+ 1) = H(k+ Lax(k+ LE)P(k+ 1RH" " (k+ Lx(k+ 1K)+ Qk+ 1)
Y+ 1) = y(k+ 1) = h(k+ La(k+ 1 k) ((13;
Fh,u(h),x(k k) = af(k,u(écx).x(k)) e (11)
Hk+ La(k+ 1k) = h(k + léxx(k+ 1)) e (12)

The suboptimal fadingfactor, A(k+ 1), can be gained by the following calculation with
A(l) =1:

Nka =l 13
( + )_ 1,)\0< 1 - 9 & ( )
w here
A= trace[ N(k+ 1)]/trace[M(k+ 1)] (14)
N(k+ 1)= Volk+ 1) - H(k+ Lax(k+ 1 B)C(k) Qi(k)TT(K)H ™ (k+ Lix(k+ 1 k) - Quk+ 1)
. . ] (15)
M(k+ 1) = H(k+ La(k+ Uk)F(k,u(k),x(k k)P (k k) F"(k,u(k),x(k k)H"(k+ 1,
x(k+ 1k) ( 16)
In the equation (15), . .
H(1,x(1 0))P(1 0)H"(1,x(1 0)) k=0
k+ 1
Vo(k+ 1) = %Zy(j)yf(j) - Z0(1)1+ Y(M(z)l k=1
i _T[Vo(k) o+ DY'(k+ 1) k=2
(17)

2.2 The Joint estimation of state and parameter
Consider nonlinear time-varying stochastic system
x(k+ 1) = f(k,u(k),0(k), x(k)) + T(k)w (k)
Qk+ 1)= g(k0(k))+ wi(k) (18)
y(k+ 1) = h(k+ 1,8k+ 1),x(k+ 1)) + e(k+ 1)
where O denotes [ dimensional time-varying parameter vector, g denotes [ dimensional
nonlinear function, w1(k) is assumed to be an independent, zero-mean, Gaussian white
noise process with covariance (« . The other characteristics of system are the same as
above section.
Now , to be able to acquire the estimation of statex and parameter 8, make aug—

menting as follows:

REE 1)}

xak+ 1) = [e(k+ D (19)
f(k,u(k),e(k%x(k)]

a(k,u(k),xdk)) = |: 20

fakyu(k),xa(k)) ok BE)) (20)
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ha(k+ 1), xuk+ 1)) = h(k+ 1L&k+ 1,x(k+ 1) (21)

T(k)w (k)
welk) = [w (k) } (2
ek + 1) = e(k+ 1) (23)
Thus, the system ( 18) is equivalent to
xa(k+ 1) = falku(k),xdk)) + wak) } (24)
y(k+ 1) = ha(b+ Lixa(k+ 1)) + e(b+ 1)

Clearly, the equations (24) have the same mode as the given equation (1). Therefore,
the joint estimation of statex and parameter 8can be obtained by the suboptimal fading—
factor EKF.

In some cases, perhaps the joint estimation of all parameter Oand state & can not be
obtained. The reason is that all parameters and states are not all identifiable. In applica—
tion, this problem can be solved by experiment, that is, with the consistency of identifica—
tion as decision criterion, to add gradually the amount of parameter identified together
with state x at the same time.

Usually, g(k, 8 k)) is unknown. In this case, it is feasible to assume g (k, 0(k)) =
O(%) in first approximation. So, based on the equations ( 24), the joint estimation of the

state and parameter for the system (18) can still be obtained by the suboptimal fading—
factor EKF.

3 Application

Considering the health monitoring for liquid rocket engine with turbopump feed sys—
tem' ", we apply the proposed estimator to the joint estimation of the state and parameter
of liquid rocket engine system, so as to be able to track changes in a few selected param—
eters of the engine, which might be affected by the fault occurred.

Based on the nonlinear models given in reference[ 3], taking on<ine measurable pa—
rameters including combustion chamber pressure( pc ), turbopump shaft speed ( n), en—
gine oxidizer mass flowrate (mo), and engine fuel mass flowrate ( ms ) as the engine
system outputs and pressures at inlet of fuel and oxidizer pump ( pir and pipo) as the in—
puts, and taking the estimated parameter R« as a simulation example, which is not ob-
tained by measuring, the nonlinear dynamic models are denoted by the following set of
continuous-time equations

x(t) = [t u(t),6(t),x(1)
B(1) = g(t,Ruc(1)) (25)
y(t) = h(e,801),x(1))
The discretetime nonlinear stochastic system models are given by
x(k+ 1) = f(k,u(k),0(k),x(k)) + T(k)w (k)
8k+ 1)= g(k,Roc(k)) + wi(k) (26)
y(k+ 1) = h(k+ 1,80k+ 1),x(k+ 1)) + e(k+ 1)
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In simulation, time stepsize AT= lms , and Q1, (2 are taken as a constant diagonal
matrix. Process noise in estimator is taken as three dimensional vector. Let g(k, Ro«( k))
= R«(k) . Q<is also taken as a constant by experiment. T he measurements y are obtained
from the simulation of transient performance under fault conditions based on the full or—
der nonlinear dynamic models of liquid rocket engine, in which the measurements ob-
tained include measuring noise but not process noise. If necessary, see reference[ 5] for
further details. Thus. it is clear thatx R'",u  R%. 0 R',y R, nonlinear functions

F:R"x R® - R", and :R" - R".
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The results of the joint estimation are shown in Fig. 1 Fig. 5 when fault has oc-
curred at time k = 40 due to engine oxidizer main valve failure (that is, R« has
changed). It is very clear that the state and parameter can be obtained the consistent es—
timation by the suboptimal fadingfactor EKF. In the simulation, such a result can not

be obtained by the conventional EKF.
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Fig. 5 The estimation result of the parameter R

(at k= 40, failure occurs at the oxidizer main valve)

4 Conclusions

This paper proposes a kind of suboptimal fadingfactor EKF, which can be used in
the joint estimation of states and parameters for a class of nonlinear stochastic systems.
Numerical simulation result gained in application to LRE system shows this estimator
has the ability of rapidly tracking the time-varying state and parameter. In the paper, the
algorithm has been given with the discrete recursive formulations, thus it is easy realized
and has strong real4ime operating ability. Some theoretical problems such as the identi—
fiability of the studied system, the stability of the suboptimal fading<factor EKF etc.
need further study.

For such a complex system as liquid rocket propulsion system, the estimations of
fault isolation and fault extent are still very difficult. So far, it seems to be short of ef-
fective methods. In the paper, applying the estimator proposed to the health monitoring
of LRE is only preliminary. Besides the problems mentioned above, the others such as
LRE models, computational cost, estimated parameters selectingetc. still need much ef-
fort.- But we believe that the joint estimation of states and parameters at least provides
some valuable ideas for the health monitoring of liquid rocket propulsion system. Also,
we think that the joint estimation approach together with knowledge engineering tech—

4].[6]

niques and/ or evidential reasoning methods' may be more promising for fault diagno-

sis of real plants.
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