21 5 JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY Vol 21 No.5 1999

(410073)

TP311.132.4

Data Placement in Parallel Object-Oriented Database

Wang Yijie Hu Shouren
(Department of Computer, NUDT, Changsha, 410073)
Abstract In this paper, according to the features of parallel object-oriented database and asynchronous parallel
query execution strategy, a class-based hybrid data placement strategy is proposed, which consists of two parts: the hy-
brid data partition strategy and the class-based data allocation strategy-

Key words parallel object-oriented database, asynchronous, data placement, data partition, data allocation

In the shared-nothing multiprocessor environment, data parallelism is an important parallelism of
POODB, which requests that the database is partitioned and allocated on several processors, this is al-
ways named data placement. Data placement“"2J consists of data partition and data allocation. Data
partition is to partition the database into several data subsets, data allocation is to allocate these data
subsets onto processors. Data placement is a critical factor in achieving good system performance, and

it is associated with the parallel processing strategy of POODB.
1 Class-Based Hybrid Data Placement Strategy

Though asynchronous parallel query execution strategy is able to avoid the unnecessary data
propagation efficiently, the communication overhead is still a critical factor which affects the system
performance. According to the essential features of asynchronous parallel query execution strategy,
the principles of data placement are proposed:

(1) improve the speed of accessing data;

(2) exploit all kinds of parallelisms efficiently;

(3) localize retrieval and manipulation of data;

(4) reduce the overall communication across the processing nodes;

(5) utilize the CPU resource reasonably.

Based on the above consideration, the class-based hybrid data placement strategy is proposed,

which consists of two parts: the hybrid data partition strategy and the class-based data allocation strat—

egy-
2 Hybrid Data Partition Strategy

There are two kinds of traditional data partition strategies: horizontal partition strategy and ver—

s

1999 2 26
: , 1971 R

80 1999 5

tical partition strategy. T he horizontal partition strategy is suitable for exploiting inter-object paral—
lelism, while the vertical partition strategy is suitable for exploiting intra-object parallelism. T he hor-
izontal partition strategy is essential for parallel relational databases to achieve good salability and
speedup, it has the advantage that a selection operation can be carried out very efficiently since its pro—
cessing time is the time for processing the largest segment instead of the entire relation, but it may not
be suitable for processing of multiple concurrent object-oriented queries. T he vertical partition strate—
gy is suitable for processing of complex objects, but it will not scale up well.

According to the principles of data placement, the hybrid data partition strategy is proposed:
Firstly, the objects are vertical partitioned, there are two types of partitions: (a) data values stored in
Oid-data value pairs, (b) object cross—references stored in 0id-Oid pairs. Secondly, the vertical parti—
tions are horizontal partitioned based on Oid, the resulted partitions are called hybrid partitions. T he
hybrid partition consists of Oid-data pairs and Oid-Oid pairs, and all data of an object is stored in a
hybrid partition. The hybrid partition strategy can avoid many unnecessary 1/ 0O requests in accessing
complex objects, improve the speed of accessing data, and provide opportunities for exploiting all

kinds of parallelisms.

3 Class-Based Data Allocation Strategy

3.1 The Goal and Principles of Data Allocation
The goal of data allocation is : the loads of processors are balance, the communications among
processors are lowest. T he principles of data allocation are: (1) Balancing the working load of proces—
sors; (2) Reducing the communication overhead among processors.
3.2 The Overview of ClassBased Data Allocation Strategy
According to the goal and principles of data allocation, the class-based data allocation strategy is
proposed: Firstly, based on the load of every class, the communications among classes, the number of
classes and the number of processors, the classes are combined or partitioned reasonably, so several
class sets are constructed, the loads of class sets are balance, the communication overhead among
class sets is lowest, and the number of class sets is equal to the number of processors; Secondly, the
class sets are allocated onto processors, the communication overhead among processors is lowest.
3.3 Description of Constructing Class Sets Algorithm
The first step of class-based data allocation strategy is to construct a number of class sets.
Construciing Class Sets A lgorithm:
(The number of processors is N ; the number of classes is M; Ciis an object class (i= 1,2, ,M))
If M = N, then every class constructs a class set;
If M > N, then combine the classes:

(1) According to the loads of classes, the classes are ordered decreasely;
M

(2) Compute the average load of class sets: SetWorkAve = Z Work(Ci)/ N
1

(3) Initialize M class sets (each one is empty);
(4) Every class whose load is not less thanSetWorkAveconstructs a class set. If there are m such

classes, then the rest classes will be placed into the rest (M-m) empty class sets.
M

(5) Compute the average load of class sets again: NewSetWorkAve = Z Work(Ci)/ (N — m)
i 1

(6) Fori= m+ 1toM Do

(a) Try to place Giinto every class set, if the sum of Ci’s load and a class set’s load is not more
than New Set WorkAve, then this means that Cican be placed into this class set;

(b) If the class sets which Cican be placed in are all empty, then place Ci into the first class set;

81

(c) If the class sets which Cican be placed in are not all empty, then according to the communica—
tion between the unempty class sets and Ci order the unempty class sets decreasely, place Ci into the
first unempty class set. If there are more than one class sets whose communications are biggest, then
select a class set whose load is bigger and place Ciinto it;

(7) If there are L unempty class sets in (M — m) class setsand L > (N - m),
then (a) Order the unempty class sets decreasely according to the load of them;

(b) Forj= N- m+ 1TolL Do

For every class in No. j unempty class set Do

(a) Find aclass set with the least load from the first (N — m) unempty class sets, fetch the class and
place it into this class set.

(b) If there are more than one class sets with the least load, then select a class set whose communica—
tion with the class is the biggest, and place the class into it.

(¢) Recorder the first (N = m) unempty class sets decreasely according to the load of them.

If M < N, thenpartition the classes:

(1) According to the loads of classes, the classes are ordered decreasely;

(2) Partition the class whose load is the biggest into two hybrid partitions whose loads are equal.
At this time, if the number of classes and hybrid partitions is N , then every class and hybrid partition
constructs a class set; else reorder the classes and hybrid partitions decreasely according to the load of
them;

(3) If there is a class whose load is the biggest among all classes and hybrid partitions, then re-
peat step2; else there is a hybrid partition whose load is the biggest among all classes and hybrid parti-
tions, repartition the class which the hybrid partition belongs to : suppose that the class had been par—
titioned into k hybrid partitions, now repartition the class into (£+ 1) hybid partitions whose loads
are equal. At this time, if the number of classes and hybrid partitions is N , then every class and hy-
brid partition constructs a class set; else reorder the classes and hybrid partitions decreasely according
to the load of them;

(4) repeat step 3 until the class sets are constructed.

3.4 Description of Allocating Class Sets Algorithm

The second step of class-based data allocation strategy is to allocate the class sets constructed in
first step onto the processors.
Allocating Class Sets Algorithm

(1) Preprocess:

According to the communication among class sets, the connections among class sets can be classi—
fied into two types: high-communication connection and low —com munication connection;

Determine the allocation priorities of class sets: the class set has more high-communication connec—
tions, its allocation priority is higher; If there are two class sets which have same number of high—
communication connections, then the one with more low-communication connections has higher alloca—
tion priority; If there are two class sets which have not only same number of high-com munication con—
nections but also same number of low wommunication connections, then determine their allocation pri—
orities according to the numbers of two types of connections of their adjacent class sets;

Build the multilevel structure of class sets:

(a) The class sets with the highest allocation priority form the first level;

(b) The adjacent class sets of class sets in Level k form level £+ 1; if one of them has been in first
k levels, then it cannot be placed in level k + 1;

(c¢) Order all class sets in every level decreasely according to their allocation priorities;

82 1999 5

The class sets without high-tcommunication connections are marked by a delaytoken;

Determine the priorities of processors: A processor with a large number of connected processors is
assigned a higher priority; The priorities of two processors with the same number of connected proces—
sors are determined based on the number of the connected processors of all their connected processors;

(2) A ccording to the multilevel structure of class sets, allocate the class sets from level 1tothe last
level:

Allocate the class sets in level 1 onto several processors with the highest priority;

For every class set without delaytoken in level K + 1, firstly, find the processors of its adjacent
class sets in level £ ; secondly, find these processors” connected empty processors; lastly, allocate the
class sets with higher allocation priority onto the connected empty processors with higher priority.

For every unallocated class set without delay-+token inlevel &k + 1, allocate it according to the asso—
ciation between it and the allocated class sets;

(a) If there are some high-ecommunication connections between the unallocated class set and the
allocated class sets, and the processors of these allocated class sets have some connected empty pro-—
cessors, then select an allocated class set with the highest priority, find a processor with higher priori—
ty from its connected processors, and allocate this unallocated class set onto it;

(b) If there are some low—<communication connections between the unallocated class set and the
allocated class sets, and the processors of these allocated class sets have some connectd empty proces—
sors, then select an allocated class set with the highest priority, find a processor with higher priority
from its connected processors, and allocate this unallocated class set onto it;

(c) Else. allocate the unallocated class set onto the close processor of its adjacent class sets in
level k; (3) Order the class sets with delay-oken decreasely according to the priorities of them:

If there are some low communication connections between the class set with delaytoken and the
allocated class sets, and the processors of these allocated class sets have some connectd empty proces—
sors, then select an allocated class set with the highest priority, find a processor with higher priority
from its connected processors, and allocate this class set with delay-token onto it;

(4) Allocate the unallocated class sets with delay-token onto the rest emp ty p rocessors, the class set

with higher p riority is allocated onto the processor with higher p riority.
4 Conclusion

Data placement is an important research topic in the field of parallel database. After the research
of traditional data placement strategies, according to the features of POODB and asynchronous paral-
lel query execution strategy, the reasonable principles of data placement are proposed. Based on the
principles, the class-based hybrid data placement strategy is proposed and implemented. Experimental
results show that the class-based hybrid data placement strategy can overcome the limitations of tradi—

tional data placement strategies, it is a practical strategy.

References

1 Bassiliades N, Vlahavas I. A non— uniform data fragmentation strategy for parallel main— memory database systems. In Proc. 21th
Intl Conf- on Very Large Databases, Switzerland, 1995:370 381

2 Haddleton R F, Pfaltz J L. Parallelism in Scientific Database Queries. Proceedings of the Eighth International Working Conference
on Scientific and Statistical Database Management, Stockholn, 1996: 101 126

