基于小波域字典学习方法的图像双重稀疏表示^{*}

梁锐华,成礼智

(国防科技大学理学院,湖南长沙 410073)

摘 要:提出了一种有效地结构化字典生成算法以及图像双重稀疏表示方法。在 Rubinstein 等提出的图 像双重稀疏表示模型的基础上,引入小波零树结构,将同一空间位置对应的同方向跨尺度小波基函数的线性 组合作为新的基函数,并通过 K-SVD 学习算法得到线性组合系数,由此得到了一种更加切合图像方向特征的 结构化字典学习算法。在此基础上提出了相应的图像分解与重构算法。遥感图像 M 项逼近实验以及压缩仿 真实验表明,本文提出的结构化字典比已有的字典具有更好的图像稀疏表示效果。

关键词:稀疏表示;字典学习;小波;零树;图像压缩

中图分类号:TP911 文献标志码:A 文章编号:1011-2486(2012)04-126-06

Double sparse image representation via learning dictionaries in wavelet domain

LIANG Ruihua, CHENG Lizhi

(College of Science, National University of Defense Technology, Changsha 410073, China)

Abstract: A novel structured dictionary training algorithm is proposed for double sparse image representation. Based on the double sparse image representation model proposed by Rubinstein, the zero-tree structure of wavelet coefficients was introduced, and the new dictionary atoms were constructed by linear combination of wavelet bases in all high-frequency bands of same orientation across different scales. The linear combination coefficients were learned via K-SVD. The image decomposition and reconstruction algorithm was proposed based on the learned dictionary. The M-term approximation and compression of remote sensing images both proved the better effects of the proposed structured dictionary than the existing dictionaries.

Key words: sparse representation; dictionary learning; wavelet; zero-tree; image compression

随着信息处理数据量的急剧增长,信号稀疏 表示已经成为信号处理与应用数学等研究领域的 热点问题,其数学本质是研究如何提高基函数对 信号的线性或者非线性函数逼近能力,以寻求特 定函数空间中高维信号的"简洁"表示方法,即用 尽量少的基函数来表示信号。

基于超完备字典的信号稀疏表示方法最早在 1993 年由 Mallat 和 Zhang 提出^[1]。其中一个基 本问题在于字典选取,近年来得到了信号处理、应 用数学等领域学者的广泛关注。主流方法可以分 为两类:一类是使用固定的字典,例如 Fourier 变 换,小波变换,几何多尺度分析等;第二类是通过 机器学习方法从训练样本中学习得到适合样本特 征的自适应字典,包括广义主成份分析^[2], MOD^[3],K-SVD^[4]等。这类方法相比固定字典, 其优势在于针对不同类型的信号可以生成不同的 字典,字典原子更加切合信号特征,因而能够得到 更好的稀疏表示效果;缺点是字典学习的自由度 过高,计算量大,因而字典规模受到限制。

针对字典学习的上述缺陷,Rubinstein^[5]等提 出了双重稀疏表示方法,基本思想是选取某一固 定字典作为核心字典,再将核心字典原子进行稀 疏线性组合作为新字典的原子。Rubinstein 以冗 余 DCT 作为核心字典。最近 Ophir^[6]等将小波作 为核心字典,生成了多尺度字典。Ophir 将小波子 带独立对待,分别对各子带进行字典学习。但是, 采用多层小波分解后,信号低频子带包含的信息 较多,高频子带包含的信息较少,因而高频子带容 易产生过度拟合。

为了克服文献[6]中字典构造方法的缺陷, 本文借鉴小波系数零树结构^[7],充分利用小波系 数尺度内和尺度之间的相关性,将同方向跨尺度 小波基组合在一起,得到了一种方向更加丰富的 结构化字典。针对遥感图像,本文的字典生成方

 ^{*} 收稿日期:2011-08-25
 基金项目:国家自然科学基金资助项目(61072118)
 作者简介:梁锐华(1982—),男,湖北天门人,博士研究生,E-mail:harmon@163.com;
 成礼智(通信作者),男,教授,博士,博士生导师,E-mail:lzcheng@nudt.edu.cn

法与 Ophir 的方法相比具有更好图像稀疏表示效 果。在遥感图像压缩仿真实验中,本文方法相比 JPEG-2000 也取得了较好的结果。

1 小波域字典学习的数学模型

1.1 信号稀疏表示与字典学习

给定矩阵 $D \in \mathbb{R}^{n \times K}$, K > n, D 称为超完备字 典, D 的 K 个列向量称为原子, 记为 d_j , $j = 1, 2, \cdots$ K_o 假设矩阵 D 为行满秩, 则信号 $y \in \mathbb{R}^n$ 能够分 解成这些原子的线性组合, 或者由这些原子的线 性组合来逼近, 但是分解结果不唯一。考虑稀疏 正则化条件, 即用最少的原子来表示信号, 基于超 完备字典的信号稀疏表示数学模型本质上是求解 下面的最优化问题^[1,4]:

 $\min_{\mathbf{x}} \| \mathbf{x} \|_{0} \quad \text{s. t.} \quad \mathbf{y} = \mathbf{D}\mathbf{x}, \quad (1)$

或

 $\min \| \boldsymbol{x} \|_{0} \quad \text{s. t.} \quad \| \boldsymbol{y} - \boldsymbol{D} \boldsymbol{x} \| \leq \varepsilon \quad (2)$

其中伪范数 $\|x\|_0$ 表示向量 x 中非零元素 个数, ε 为预先设定的逼近误差。一般情况下,最 优化问题(1)或(2)的求解都是 NP 完全问题^[8], 通常使用贪婪算法或者松弛逼近方法近似求解, 主要包括正交匹配追踪(OMP)^[8],基追踪^[9],以 及针对实时需求的改进算法^[10]等。

信号稀疏表示效果与字典 D 密切相关。针 对特定类型的信号,字典 D 可以通过机器学习的 方法得到。设 { $y_i \in \mathbb{R}^n | 1 \le i \le N$ }为训练样本集, $Y = [y_1y_2 \cdots y_N] \in \mathbb{R}^{n \times N}$,字典学习的数学模型一 般归结为求解如下最优化问题:

argmin_{*D,X*} || *Y* − *DX* || $_{F}^{2}$ s. t. $\forall i$, $||x_{i}||_{0} \leq q_{0}$ (3) 其中 *X* = [$x_{1}x_{2}\cdots x_{N}$] ∈ $\mathbb{R}^{K \times N}$ 为稀疏表示系

数矩阵, q_0 为预先设定的稀疏度。

1.2 双重稀疏字典

双重稀疏字典模型^[5] 假设字典 **D** 的每个原 子都可以由核心字典 **Φ**稀疏表示,即

 $\boldsymbol{D} = \boldsymbol{\Phi} \boldsymbol{A} \tag{4}$

其中A为原子表示矩阵。文献[5]中以冗余 DCT作为核心字典,并且限定A为稀疏矩阵。文 献[6]中为了得到多尺度字典,采用小波作为核 心字典,但是舍弃了A为稀疏矩阵的限制。

图像变换编码经验表明,信号通过离散余弦 变换(DCT)后,前几行变换系数非常大,而后面的 系数非常小。离散小波变换与 DCT 略有不同,主 要区别在于:(1)小波变换具有多尺度结构;(2) 小波变换大幅值系数个数通常更少,且这些系数 并不一定位于"前面"几行;(3)小波变换后图像 的几何方向特征基本不变。

为了更好地表示图像的几何方向信息,本文 以小波作为核心字典,限定 A 为稀疏矩阵,并且 改进了文献[6]中的小波系数组织结构。

1.3 小波域字典学习

以小波作为核心字典,双重稀疏字典学习的 数学模型可以表述成如下最优化问题^[6]:

$$\underset{A,X}{\operatorname{argmin}} \parallel \boldsymbol{Y} - \boldsymbol{W}_{s} \boldsymbol{A} \boldsymbol{X} \parallel_{F}^{2}, \text{s. t. } \parallel \boldsymbol{x}_{i} \parallel_{0} \leq q_{0}, \forall i$$

(5)

其中 W_s 代表小波字典(小波逆变换)。如果 小波变换满足完全重构条件,即 W_s 可逆,则最优 化问题(5)等价于

$$\underset{A,X}{\operatorname{argmin}} \parallel \boldsymbol{W}_{\boldsymbol{a}}\boldsymbol{Y} - \boldsymbol{A}\boldsymbol{X} \parallel_{F}^{2}, \text{s. t.} \parallel \boldsymbol{x}_{i} \parallel_{0} \leq q_{0}, \forall i$$
(6)

其中 W_a 代表小波分解(小波变换)。

由式(5)和(6)可以看出,采用小波作为核心 字典,双重稀疏字典学习模型可以转化为小波域 字典学习模型。

2 小波域双重稀疏字典构造

小波变换在一定程度上可以实现图像的稀疏 表示,但是小波系数之间仍然存在较强的相关性。 小波域双重稀疏字典的引入旨在进一步消除小波 系数的相关性。

2.1 同方向子带联合方法

一幅图像经三层小波分解后形成 10 个子带, 如图 1 所示。所有子带按照频率由低到高形成树 状结构。每个小波系数对应一个结点。树根为最 低频子带的结点,它有 3 子分别位于 3 个次低频 子带的相应位置。其余子带的结点都有 4 子位于 高一级子带的相应位置。基于这一结构的小波嵌 人式零树 编码(EZW)、多级树 集合分裂算法 (SPIHT)等,在 JPEG-2000 标准形成之前一度成 为图像压缩领域的研究热点。

除去最低频子带,所有的高频子带按小波基 函数的方向性可以分为三组。所有的 HL 子带主 要包含竖直向特征,LH 子带主要包含水平向特 征,而 HH 子带则主要包含对角向特征。同方向 子带小波系数具有很强相关性。如果在某一尺度 上小波系数较大,则在其相邻尺度上同一空间位 置上的小波系数往往也较大。

以次低频子带小波系数为根结点,并将其所 有后代结点组合在一起构成的向量,我们称之为 零树向量。图 1 中,同方向子带 HL3、HL2、HL1 中的每个最小的方格代表一个小波系数。将 HL3 子带的每个系数和它的所有后代结点组合在一 起,构成一个 21 维向量。对 LH 子带和 HH 子带 进行类似处理,最终将图像空间域中大小为 8 × 8 的图像块(64 维)分解成小波域中三个 21 维高频 分量和一个 1 维低频分量(位于最低频子带)。

LL3	HL3	H	
LH3	HH3	11152	ш 1
LH2		HH2	nL1
LHI			нн1

Fig. 1 Wavelet decomposition subbands with three levels and zero-tree structure

这种小波系数重组方式的优势有两点:一是 约简了维数,将高维信息化解成低维信息;二是将 复杂的图像特征进行了初步分解,得到一个低频 分量和三个带有方向性的高频分量,便于有针对 性地进行处理。

小波域字典学习中,对最低频子带不做处理; 对所有高频子带,按零树向量重组小波系数,得到 三个训练样本集。分别对三个训练样本集进行字 典学习,得到三组方向字典。

设**Z**^r(*r*=1,2,3)的每一列对应一个零树向量, 小波域字典学习可表述为求解如下最优化问题:

$$\underset{A^{r},X^{r}}{\operatorname{argmin}} \| \mathbf{Z}^{r} - \mathbf{A}^{r} \mathbf{X}^{r} \|_{F}^{2}, \quad \text{s. t.}$$

$$\forall i, \| \mathbf{x}_{i}^{r} \|_{0} \leq q_{0}, r = 1, 2, 3$$
(7)

值得注意的是,小波域系数组织方式相比图像 空间域更加灵活,可以有其他多种组合方式。例如 文献[6]也在小波域进行字典学习,每个子带单独 生成训练样本集,三层小波分解形成10个训练样 本集,通过学习得到10组字典。小波系数分布规 律一般是越往低频子带系数幅值越大,包含的信息 越多;而越往高频子带系数幅值越小,包含的信息 越少,因此高频子带字典容易产生过度拟合。

2.2 平移不变性

二维张量积小波的缺陷之一是不具备平移不

变性。因为小波变换每一层都要经过下采样,小 波系数对图像平移比较敏感。图像空间平移可能 引起小波系数剧烈变化。文献[6]将各子带划分 成小块,块与块之间可以重叠。但是子带内部块 与块的重叠并不能弥补图像平移的影响。

为了消除小波平移不变性缺失带来的不利影 响,我们先在空间域对训练图像进行有重叠的分 块,然后对所有分块图像做小波变换,最后将小波 系数按零树向量重组生成训练样本集。

2.3 小波域字典学习算法

终上所述,小波域跨尺度字典学习算法描述 如下:

(1)输入。训练图像集。

(2)设定参数。小波变换图像块的大小 m×
 m,小波滤波器系数,小波分解的层数 L,三组高频
 字典的原子个数(K₁,K₂,K₃),字典稀疏度 p₀,信
 号稀疏度 q₀,训练迭代次数 J。

(3) 根据小波分解的层数 *L* 计算零树向量的 维数 *n*。

(4)生成训练样本集。对每幅训练图像,将 图像划分成重叠的大小为 m×m 的图像块。每个 图像块先做小波变换,然后分别对三个方向高频 子带按零树向量重组小波系数。每个方向的所有 零树向量合在一起构成该方向训练样本集,由此 得到三个训练样本集 **Z**₁,**Z**₂,**Z**₃。

(5)字典初始化。

(6)对r = 1,2,3,重复以下迭代步骤①②, 直至J次:

① 稀疏编码。固定字典 A',用 OMP 算法计 算系数矩阵。

② 字典更新。固定系数矩阵,对字典 A' 的 每一列 a'_k:

• 搜索样本集中用到该原子的样本,得到下标集 $\omega_k = \{i \mid x_i^k \neq 0, 1 \leq i \leq N\};$

• 计算残差矩阵 $E_k = Y' - \sum_{i \neq k} a_i^r x_i;$

• 选取矩阵 E_k 对应于下标集 ω_k 的各列,得 到矩阵 E_k^R ;

对 *E^R_k* 做奇异值分解 *E^R_k* = *USV^T*,取 *U* 的第1列,保留最大的 *p*₀ 个分量,其余分量置为零,作为新原子 *a[']_k*,将 *V* 的第1列乘以 *S*(1,1) 作为新系数 *x_k*。

(7)输出。代表不同方向特征的三组方向字 典 *A*^r(*r*=1,2,3)。

2.4 图像分解与重构

通过小波域跨尺度字典学习算法得到三组方

向字典后,即可对图像进行分解与重构。图像分 解步骤如下:

(1)对测试图像做无冗余小波分解,小波滤 波器系数和分解层数与字典学习算法中设定的参 数相同。

(2)保留最低频子带小波系数;对于高频子带 小波系数,将其分成三个方向按零树结构进行重组。

(3)使用 OMP 算法分别对三个方向的零树 向量进行字典分解,得到三个稀疏系数矩阵。三 个系数矩阵与最低频子带小波系数共同构成图像 的稀疏表示系数。

图像重构步骤如下:

(1)将三个方向的高频字典分别与对应的系数矩阵相乘,得到三个方向的零树向量矩阵。

(2)将零树向量重组还原成小波高频子带结构, 与最低频子带小波系数共同构成完整的小波子带。

(3)做小波逆变换,得到重构图像。

3 图像压缩仿真实验与结果分析

图像压缩是检验图像稀疏表示效果的有效手段^[11-12]。另一方面,基于超完备字典的图像稀疏 表示依赖于特定的字典,一般不存在对所有类型 图像都适用的字典^[12]。为了检验小波域跨尺度 字典学习算法及图像双重稀疏表示模型的有效 性,我们将其应用于遥感图像有损压缩,并与 JPEG-2000 压缩标准进行比较。

3.1 图像压缩编码方案与码流分配

图像有损压缩的目标是在给定码率下使得压 缩图像失真最小。通常情况下,图像纹理区域包 含的信息量较多,而平坦区域包含的信息量较少, 因此有必要为每个零树向量分配不同的稀疏表示 系数个数。因为小波变换保持能量不变,所以压 缩码流分配可以直接在小波域进行。

令 Z^r(r=1,2,3)表示零树向量构成的矩阵,
 Z⁰表示小波变换最低频子带系数,码流分配可以

描述为求解如下优化问题:

$$\min_{Q} \sum_{r=1}^{3} \| \mathbf{Z}^{r} - \mathbf{A}^{r} \cdot Q(\mathbf{X}^{r}) \|_{F}^{2}$$

+ $\| \mathbf{Z}^{0} - Q(\mathbf{Z}^{0}) \|_{F}^{2}$, s. t.

 $R(Q(\mathbf{X}^{r})) + R(Q(\mathbf{Z}^{o})) \leq R_{0}$ (8)

其中 $Q(\cdot)$ 表示量化编码后的系数, $R(\cdot)$ 表示无损编码所需码流长度, R_0 为预先设定的最大码流长度。

直接求解式(8)比较困难。尽管如此,图像 分解过程中 OMP 算法每次迭代只增加一个非零 系数,并计算残差。因此压缩实验中 *R*(•)近似 取为非零系数个数,直接比较残差即可优化零树 向量之间的非零系数个数分配。

图像编码过程中,可以认为字典和各项参数 已知,不需要编码。需要编码的信息包括最低频 子带 Z⁰ 和三个稀疏系数矩阵 X'(r = 1,2,3)。 将 Z⁰ 一致量化后采用算术编码。X'中非零系数 个数、位置和系数值分开编码,非零系数个数和位 置采用 Huffman 编码,系数值通过一致量化后采 用算术编码。

3.2 实验结果

实验中,小波滤波器选用 JPEG-2000 中推荐的 CDF 9/7 双正交小波,小波分解的层数设定为 5 层,对应的零树向量维数为 341,最低频子带系数个数占小波系数总数的 1/1024。

选取10幅不同空间分辨率、包含不同细节和 纹理特征的遥感图像作为训练图像集。图像位深 8比特,图像大小均截取为1024×1024。小波变 换图像块的尺寸设定为512×512,三个方向字典 规模均设定为1024,字典稀疏度设定为170,信号 稀疏度设定为17。使用小波域跨尺度字典学习 算法得到三个方向字典,其中部分原子如图2所 示。从图2中可以看出:竖直向的字典基本保持 了竖直向细节特征,而且比小波基函数拥有更多

n字典 (b)水平向字典 (c)对 图 2 三个方向字典的部分原子 Fig. 2 Partial atoms of the three learned sub-dictionaries

)

的方向;水平向的字典与之类似;因为二维张量积 小波变换不能区分正负45°特征,所以对角向的 字典正负45°特征仍然混叠在一起。

另选 10 幅遥感图像作为测试图像进行压缩 实验,图像位深、大小与训练图像相同。首先进行 图像的 M 项逼近误差实验,并与小波变换和文献 [6]中的字典生成方法进行比较。综合测试结果 如图 3 所示,其中横坐标为保留的非零系数个数 与测试图像总像素数之比,纵坐标为所有测试图 像峰值信噪比(PSNR)的平均值。从图 3 中可以 看出,本文的方法在较低比率时(3%以下)优势 比较明显。

图 3 M 项逼近的峰值信噪比

Fig. 3 The PSNR of M-term approximation

根据主观判读经验,高分辨率遥感图像在压缩码率大于1bpp(比特每像素)时,图像失真基本不影响判读,而码率小于0.5bpp后,基于小波的JPEG2000压缩算法难以满足判读需求。采用峰

值信噪比客观评价压缩效果。表1列出了每幅图 像在0.5bpp 码率压缩后的峰值信噪比。从中可 以看出,本文中的压缩方法 PSNR 比 JPEG2000 平 均高出约0.4dB。

表1 压缩图像 PSNR(单位:dB)

Tab. 1	The PSNR	of com	pressed images	(dB
--------	----------	--------	----------------	-----

测试图像	JPEG-2000	文压缩结果
01	35.51	35.57
02	32.70	33.12
03	33.52	34.07
04	30.13	30.65
05	34.49	34.84
06	24.88	25.51
07	30.76	31.26
08	28.36	28.74
09	31.86	32.35
10	27.16	27.63
平均	30.937	31.374

为了更直观地比较遥感图像压缩效果,图4显示了测试图像及压缩图像局部放大的结果,压缩码率为0.5bpp。观察图像中具有较强方向特征的目标,例如位于图像正中的吊车阴影、位于图像右半部的海岸线等,可以看出本文压缩方法能够更好地保持方向特征,压缩图像细节保持效果优于JPEG-2000。这主要得益于本文采用的小波域跨尺度方向字典,相比JPEG-2000采用的二维张量小波,具有更丰富的方向特征。

(a)测试图像局部放大

 (b) JPEG-2000 压缩(0.5bpp)
 (c) 2

 图 4 测试图像与压缩图像局部放大

Fig. 4 The magnified parts of the original image and compressed images

综合以上实验结果可以看出,在遥感图像压 缩应用中,本文压缩方法在客观压缩指标和主观 判读视觉效果都有一定的优势。我们认为,图像 压缩效果的提升主要归功于双重稀疏表示模型和 小波零树结构。这也验证了本文提出的小波域字 典构造方法是有效的,得到了比较好的图像稀疏 表示效果。尽管如此,仿真实验中的压缩方法计 算复杂度和存储开销都大大高于 JPEG2000,因此 也限制了其应用范围。

⁽c)本文压缩方法(0.5bpp)

4 结 论

本文将双重稀疏编码和小波零树结构结合, 构造了一种新的结构化字典,为图像稀疏表示提 供了一种新的思路和方法。遥感图像压缩实验表 明,这种结构化字典能够好地保持图像的方向特 征,在一定程度上弥补了二维张量小波方向性的 缺失,在低码率压缩中取得优于 JPEG-2000 的效 果。此外,本文的字典构造方法具有较好的通用 性,可以和基于小波的几何多尺度分析工具很好 地结合,并应用于图像压缩、去噪等图像处理 问题。

参考文献(References)

- Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Trans. Signal Process, 1993, 41(12): 3397-3415.
- [2] Vidal R, Ma Y, Sastry S. Generalized principal component analysis (GPCA) [J]. IEEE Trans. Pattern Anal Mach Intell, 2005, 27(12):1945-1959.
- [3] EnganK, Aase S O, Husoy J H, Method of optimal directions for frame design[C]//IEEE Int Conf Acoust, Speech, Signal Process (ICASSP), 1999;2443 – 2446.
- [4] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
 [J]. IEEE Trans Signal Process, 2006, 54 (11): 4311 -4322.

- [5] Rubinstein R, Zibulevsky M, Elad M. Double sparsity: learning sparse dictionaries for sparse signal approximation [J].
 IEEE Trans Signal Process, 2010, 58(3):1553 - 1564.
- [6] Ophir B, Lustig M, Elad M. Multi-scale dictionary learning using wavelets [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5):1014 – 1024.
- Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients[J]. IEEE Trans Signal Process, 1993, 41(12): 3445-3462.
- [8] Davis G, Mallat S, Zhang Z. Adaptive time-frequency decompositions[J]. Optical Engineering, 1994, 33(7):2183 -2191.
- [9] Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit[J]. SIAM J Sci Comput, 2001, 43(1):129-159.
- [10] 王春光,刘金江,孙即祥. 基于粒子群优化的稀疏分解最优原子搜索算法[J]. 国防科技大学学报,2008,30(2): 83-87.
 WANG Chunguang, LIU Jinjiang, SUN Jixiang. Algorithm of searching for the best matching atoms based on particle swarm optimization in sparse decomposition[J]. Journal of National University of Defense Technology, 2008, 30(2):83-87. (in Chinese)
- [11] 陈波,成礼智,王红霞.基于快速方向重叠变换的图像压缩[J].国防科技大学学报,2009,31(5):54-57.
 CHEN Bo, CHENG Lizhi, WANG Hongxia. Fast directional lapped transform based image compression [J]. Journal of National University of Defense Technology, 2009, 31(5):54-57. (in Chinese)
- [12] Elad M, Goldenberg R, Kimmel R. Low bit-rate compression of facial images [J]. IEEE Trans Image Process, 2007, 16 (9):2379-2383.