doi:10.11887/j.cn.202104003

http://journal. nudt. edu. cn

# 高空气球外形计算及通用算法设计\*

周江华1,金伟城1,2,李智斌3

(1. 中国科学院空天信息创新研究院,北京 100094; 2. 中国科学院大学,北京 100049;
 3. 山东科技大学 电气与自动化工程学院,山东 青岛 266590)

摘 要:高空气球为临近空间中的研究提供了可靠的低成本平台。目前高空气球球形一般直接采用"自 然形"或以"自然形"为基础,但通用、简捷地求解"自然形"外形方程一直是个难点。将"自然形"气球外形求 解问题转化为最优控制问题,利用最优控制领域成熟的求解工具——高斯伪谱法最优化软件包计算气球外 形。此外,通过分析外形数据得到外形变化规律,设计通用算法求解任意球形控制因子、任意高度的"自然 形"气球外形。结果显示,该算法无须调参便可计算所需的"自然形"球形,便于科研人员快速获得大量所需 球形数据。

关键词:高空气球;"自然形"气球;球形设计;高斯伪谱法 中图分类号:V221+.92 文献标志码:A 开放科学(资源服务)标识码(OSID): 文章编号:1001-2486(2021)04-017-07



# High-altitude balloon shape calculation and general algorithm design

ZHOU Jianghua<sup>1</sup>, JIN Weicheng<sup>1,2</sup>, LI Zhibin<sup>3</sup>

(1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China;

3. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract: High-altitude balloon provides a reliable low-cost platform for high altitude scientific experiments. The shape of the balloon is directly adopted as natural-shape or based on natural-shape; however, how to simply and quickly solve the natural-shape equation general-purpose is a difficult problem. The mature solution tool in the field of optimal control—gauss pseudospectral optimization software was used to solve the natural-shape balloon equation which is transformed into the optimal control description. Furthermore, a general algorithm was designed to solve the natural-shape balloon shape with any spherical control factor and any height by analyzing the shape data. Results show that this algorithm can calculate the required natural-shape without adjusting parameters, which is convenient for researchers to quickly obtain a large amount of required spherical data.

Keywords: high-altitude balloon; natural-shape balloon; balloon shape design; Gaussian pseudospectral method

高空气球利用充入密度小于空气的气体所产 生的浮力飞行,是目前可在临近空间工作的几种飞 行器之一,具有价格低、工作周期短、吊舱易回收、 飞行时间可以根据需要灵活控制等优点,为在高层 大气中进行研究提供了可靠的低成本平台。就其 结构形式来说,高空气球又分为底部排气管与大气 连通的零压式气球以及全封闭的超压式气球<sup>[1]</sup>。

高空气球的外形设计以及升空过程中外形的 变化是浮空器设计以及浮空器飞行动力学研究的 基础。气球外形的第一个理论性成果是 Upson 假 设仅存在纵向张力的情况下提出的"自然形"气 球<sup>[2]</sup>。由于其以  $\Sigma$  作为球形控制因子,因此也称 为  $\Sigma$  – shape。现今的球形设计大多直接采用"自 然形"或以"自然形"为基础:Yajima 在文献[3]中 指出"自然形"气球的极限形式为欧拉体,而欧拉 体作为一种无加强筋的超压球是各种超压球的设 计基础<sup>[4-5]</sup>。

虽然"自然形"气球外形方程具有简单的形式,但无法获得解析解。现一般采用打靶法进行数值求解。对完全膨胀的设计球形求解:Smalley利用打靶法以 $\Sigma$ 表的形式给出了 $\Sigma$ 在0~1之间的部分球形数据<sup>[6]</sup>;姜鲁华采用Gill法并以计算机程序的方式给出0~1之间任意 $\Sigma$ 值的气球外形<sup>[7]</sup>。对于 $\Sigma \ge 1$ 时的气球外形,并未见到有相关文献给出参考数据,且2.2节结果显示, $\Sigma$ 从1.5变化到2.0,其初始角度只改变了1°左右,可

 <sup>\*</sup> 收稿日期:2019-12-13
 基金项目:国家自然科学基金重点资助项目(61733017)
 作者简介:周江华(1973—),男,江西鹰潭人,研究员,博士,硕士生导师,E-mail;zhoufma@ aoe. ac. cn

见此时初值的敏感度较高,打靶法求解困难。

上升段球形分析对升空过程中的动力学分析 以及工程应用有重要的参考价值。Farley认为升 空段氦气泡为水滴形,顶部比较平坦,将其用圆球 阻力系数近似并不合适,因此Farley用圆锥体近 似升空段球形并给出参考阻力系数(*C*<sub>d</sub> ≈ 0.8)<sup>[8]</sup>。若能通过求解升空球形,获得不同高度 下气泡最大横截面积更准确的估计,便可更为精 准地估算升空时的气动阻力。上升段球形分析另 一个重要的应用是估计升空段球顶压差。高空气 球利用球顶排气阀来调节升空段的浮力,而浮力 排出率与球顶压差相关,零压气球通常不安装压 差传感器,需要依赖事前估计。通过求解升空球 形得到的球顶压差比采用圆球近似更为准确<sup>[9]</sup>。

然而高空气球为由极薄聚乙烯(PolyEthylene, PE)膜材料构成的软式充气结构,随着升空高度的 变化,气球体积不断膨胀,导致其外形轮廓的变化 非常之大。相较于平飞段(满充)外形,升空段球 体大部分情况下底部呈聚束状,初始角度几乎为零 且需一同猜测初始角度及零压面高度两个参数。 Smalley<sup>[10]</sup>将底部聚束视为负载,用打靶法求解外 形,但计算不同高度的球形都需调整模型。 Baginski等<sup>[11]</sup>采取解方程的思路:基于 MATLAB 的 fsolve 函数,利用多重打靶法求得底部张角及零 压面高度,再借助龙格库塔法获得气球外形,但气 球高度越低,分段数越多,计算量越大。杨燕初 等<sup>[12]</sup>基于 MATLAB 的 fmincon 函数,结合多重打 靶法求解外形,计算时长依赖于初值的选取。

试验飞行需要充足的高空气球升空过程中的 形体数据,原有的计算方法需花费大量的时间和 精力,因而需要一种简单快速的计算方法来求解 "自然形"气球外形方程。

高斯伪谱法因其具有收敛性好以及初值敏感 度低的优点,已经成为一种较为常用的解决最优控 制问题的算法,而基于高斯伪谱法的高斯伪谱法最 优化软件包(Gauss Pseudospectral OPtimization Software,GPOPS – II)也成为解决最优控制问题的 有力工具之一。在此基础之上,本文提出将"自然 形"外形方程转化为最优控制描述形式;然后用 GPOPS – II工具求解的思路,以期精确、简捷得到气 球完全膨胀以及升空状态下的外形数据;同时设计 通用算法,以实现无须调参便可求解任意 $\Sigma$ 、任意 高度下的"自然形"球形的目标。

# 1 "自然形"气球外形方程

"自然形"气球也称为 $\Sigma$ 外形气球。可由如

下六个常微分方程表示[6,13]:

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}\tilde{s}} = -\frac{\tau_{\mathrm{b}}(\tilde{z}+\tilde{a})\tilde{r} + \Lambda\tilde{r}_{\mathrm{d}}\mathrm{sin}\theta}{\tilde{Q}} \\ \frac{\mathrm{d}\tilde{Q}}{\mathrm{d}\tilde{s}} = \Lambda\tilde{r}_{\mathrm{d}}\mathrm{cos}\theta \\ \frac{\mathrm{d}\tilde{r}}{\mathrm{d}\tilde{s}} = \mathrm{sin}\theta \\ \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{s}} = \mathrm{cos}\theta \\ \frac{\mathrm{d}\tilde{Z}}{\mathrm{d}\tilde{s}} = 2\pi\tilde{r} \\ \frac{\mathrm{d}\tilde{V}}{\mathrm{d}\tilde{s}} = \pi\tilde{r}^{2}\mathrm{cos}\theta \end{cases}$$
(1)

式中: $\theta$ 为母线上任意点的切线与纵轴的夹角,从 纵轴到切线,顺时针为正(见图1); $\tilde{s}$ 为无量纲球 膜弧长; $\tilde{Q}$ 为无量纲球膜纵向总张力; $\tau_b$ 为升限 高度与当前高度气球体积比; $\tilde{z}$ 为母线上任意点 的高度; $\tilde{a}$ 为球底相对零压面的高度; $\tilde{r}$ 为当前高 度气球无量纲半径; $\tilde{r}_d$ 为升限高度无量纲半径;  $\tilde{S}_a$ 为气球表面积; $\tilde{V}$ 为气球体积; $\Lambda = \Sigma/(2\pi)^{\frac{1}{3}}$ 。  $\Sigma$ 为无量纲面密度,也称为球形因子,由飞行任务 参数:负载重力L、球体完全膨胀体积  $V_d$ 、球体与 负载重力之和 G 以及球膜材料面密度  $\omega_d$  决 定,则:

$$\Sigma = (2\pi/L)^{\frac{1}{3}} (V_{\rm d}/G)^{\frac{2}{3}} \omega_{\rm d}/g$$
 (2)

 $\tau_b = 1$ (此时 $\tilde{a} = 0, \tilde{r} = \tilde{r}_d$ )为满充时的外形,即 设计球形。 $\tau_b > 1$ 为设计球形在升空高度的外 形,由于方程中含有 $\tilde{r}_d$ ,求解升空段外形,需先计 算出设计球形。



图 1  $\Sigma$ 外形气球示意图

Fig. 1 Schematic diagram of  $\varSigma$  – shape balloon

对于  $\Sigma$  气球,设计球形及升空段球形的计算,本质上是求解一个两点边值问题:

当 $\tilde{s} = 0$ 时, $\tilde{r} = \tilde{z} = \tilde{S}_a = \tilde{V} = 0$ , $\theta = \theta_0$ , $\tilde{Q} = 1/(2\pi\cos\theta_0)$ ;当 $\tilde{s} = \tilde{I}_s$ 时, $\theta = -\pi/2$ , $\tilde{r} = 0$ 。 其中, $\tilde{I}_s$ 为母线总长度, $\theta_0$ 和 $\tilde{a}$ 未知,由上述边界条件唯一确定。

# 2 数值求解

GPOPS – II 是用于解决非线性最优控制问题 的通用 MATLAB 软件包。该软件包利用可变阶 的高斯伪谱法,将最优控制问题离散并转换为非 线性规划问题,通过非线性规划问题求解器对非 线性规划问题进行求解<sup>[14-15]</sup>。

由于最优控制问题本身就是一个两点边值问题,因此,GPOPS – II 可用于气球外形的计算。但 需对气球模型方程组做适当的处理,将其转换为 最优控制问题。

### 2.1 GPOPS - Ⅱ 求解工具介绍

GPOPS – II 基于高斯伪谱法,其求解最优控制问题的思路是将连续的最优控制问题离散化为 非线性规划问题,然后通过 Karush-Kuhn-Tucker 条件求解<sup>[16-17]</sup>。Benson 证明了高斯伪谱法满足 协调映射定理,即利用高斯伪谱法离散最优控制 问题后得到的非线性规划问题的 Karush-Kuhn-Tucker 条件与最优一阶必要条件的离散形式完全 等价<sup>[18]</sup>,这使得高斯伪谱法同时具备了直接法的 快速性与间接法的精确性。

在 GPOPS – II 中,需要设定变量的初值、终 值以及变量范围三组参数。得益于高斯伪谱法对 初值、终值敏感度低的优点,初值、终值只需猜测 一次便可,在求解不同球形时无须调整,因而对于 不同的球形,只需猜测变量范围即可。相较于多 重打靶法每次计算需猜测数十个参数<sup>[11-12]</sup>,此方 法可将其减少至五个左右;同时一组参数可以计 算一段 Σ(或高度)区间的外形,与打靶法相比具 有通用性。

# 2.2 设计球形的求解

### 2.2.1 微分方程组的处理

最优控制中各状态变量均为时间的函数,且 有代价函数以及控制量。因而对式(1)做如下处 理:将弧长 š 视为时间,且代价函数为最小化"终 止时间" š<sub>f</sub>,即:

$$J = \int_{0}^{s_{f}} d\tilde{s}$$
 (3)

将 $\Lambda$ 视为控制量;对无量纲总张力进行处 理,使其初值条件脱离对 $\theta_0$ 的依赖,即令 $\tilde{M}=\tilde{Q}$ · cos $\theta$ ,这样当 $\tilde{s}=0$ 时, $\tilde{M}=1/(2\pi)$ ;由于此时气球 处于完全膨胀状态,因此 $\tilde{r}_d=\tilde{r}$ ;式(1)中的表面积 以及体积可以独立计算,故为了减少计算量在这 里暂不计算这两项,可以在之后用梯形积分公式 得到。整理上述处理之后,气球模型如下:

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}\tilde{s}} = -\frac{\tau_{\mathrm{b}}(\tilde{z}+\tilde{a})\tilde{r} + \Lambda\tilde{r}\mathrm{sin}\theta}{\tilde{M}}\mathrm{cos}\theta\\ \frac{\mathrm{d}\tilde{M}}{\mathrm{d}\tilde{s}} = \Lambda\tilde{r} + \mathrm{sin}\theta \cdot (\tilde{z}+\tilde{a}) \cdot \tilde{r}\\ \frac{\mathrm{d}\tilde{r}}{\mathrm{d}\tilde{s}} = \mathrm{sin}\theta\\ \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{s}} = \mathrm{cos}\theta \end{cases}$$
(4)

其中: $\Lambda$  视为控制量,代价函数为最小化"终止时间" $\tilde{s}_{f}$ ,零压面高度  $\tilde{a} = 0, \tau_{b} = 1$ 。初值条件为:当  $\tilde{s} = 0$  时, $\tilde{r} = \tilde{z} = 0, \theta = \theta_{0}, \tilde{M} = 1/(2\pi)$ ;终值条件 为:当 $\tilde{s} = \tilde{s}_{f}$ 时, $\theta = -\pi/2, \tilde{r} = \tilde{M} = 0$ 。

2.2.2 设计球形数值解

从式(4)可以看出,对于完全膨胀状态球形 方程,只有一个自由度 $\theta_0$ 且其受终值条件约束, 因此只要找到满足终值条件的 $\theta_0$ ,就能得到该方 程组的唯一解。此时,在 GPOPS – II 中不同球形 需要调整的参数虽然需要 $\tilde{M}$ , $\tilde{r}$ , $\tilde{z}$ 的最大值以及 $l_s$ 四个参数,但实际计算发现这些参数对 $\Sigma$ 的变化 敏感度较低。相较于原有的计算方法,虽然增加 了三个参数,但避免了在大 $\Sigma$ 情况下, $\theta_0$ 变化不 明显且难以猜测的缺点。

文献[6]用打靶法给出了部分参考结果,以 其计算结果作为初值并用四阶龙格库塔法验算, 发现终值符合要求。表1给出了本文与文献[6] 计算结果比较,可以看出,两者的计算结果基本一 致,说明了本文计算方法的有效性。同时表2补 充了 *Σ*≥1 时的部分参考数据,从表中的数据也 可发现:*Σ*从1.5 变化到2.0,其初始角度只改变

#### 表 1 高斯伪谱法计算结果与 Smalley 计算结果对比

Tab. 1 Comparison of calculation result of Gaussian pseudospectral method and Smalley's

| Σ   | 本文 θ <sub>0</sub> / | Smalley $\theta_0$ / | 本文 $l_s$ | Smalley $l_{\rm s}$ |
|-----|---------------------|----------------------|----------|---------------------|
|     | (°)                 | (°)                  |          |                     |
| 0   | 50.149              | 50.149               | 1.994    | 1.994               |
| 0.1 | 54.392              | 54.391               | 2.155    | 2.155               |
| 0.2 | 58.886              | 58.885               | 2.350    | 2.350               |
| 0.3 | 63.469              | 63.468               | 2.588    | 2.588               |
| 0.4 | 67.920              | 67.918               | 2.870    | 2.870               |
| 0.5 | 72.012              | 72.012               | 3.198    | 3.198               |
| 0.6 | 75.579              | 75.578               | 3.567    | 3.567               |
| 0.7 | 78.548              | 78.548               | 3.971    | 3.971               |
| 0.8 | 80.937              | 80.937               | 4.401    | 4.401               |
| 0.9 | 82.816              | 82.816               | 4.852    | 4.852               |
| 1.0 | 84.276              | 84.277               | 5.317    | 5.318               |

表 2 部分  $\Sigma \ge 1$  的计算结果

| Tab. 2 | Partial calculation result | It for $\Sigma \ge 1$ |
|--------|----------------------------|-----------------------|
| Σ      | $	heta_0 / (\circ)$        | $l_{\rm s}$           |
| 1.10   | 85.407                     | 5.793                 |
| 1.20   | 86.282                     | 6.278                 |
| 1.30   | 86.963                     | 6.768                 |
| 1.40   | 87.497                     | 7.262                 |
| 1.50   | 87.918                     | 7.760                 |
| 1.60   | 88.254                     | 8.260                 |
| 1.70   | 88.523                     | 8.761                 |
| 1.80   | 88.742                     | 9.265                 |
| 1.90   | 88.920                     | 9.769                 |
| 2.00   | 89.067                     | 10.275                |

了 1°左右,此时方程组对初值异常敏感,此时若 用打靶法来求解则较为困难。为验证 Yajima 在 文献[3]中"可以用  $\Sigma$  = 2.0 的'自然形'外形近似 做欧拉体外形"的结论,绘制了大  $\Sigma$  外形与欧拉 体外形的归一化外形(r, z 均除以总弧长  $\tilde{I}_{s}$ )对比 图,如图 2 所示。可以看到,虽然  $\Sigma$  增加,但气球 外形总体变化不大,且  $\Sigma$  = 2.0 的外形与欧拉体 外形已极为接近,故可将  $\Sigma$  = 2.0 的"自然形"外 形近似做欧拉体外形。





## 2.3 升空状态球形求解

2.3.1 升空微分方程组处理

不同于式(4)中 $\tau_b \equiv 1$ ,在升空状态下, $\tau_b$ 与 气球飞行高度存在函数关系,且 Baginski 在文 献[11]中指出,当 $\tau_b \ge 10$ 时, $\theta$ 几乎等于零,此时 方程组对初值异常敏感,很难直接满足终值条件。因此本文借鉴多重打靶法的思路,将弧长 s 分为两段: $s \in [0, \tilde{I}_s/k]$ 以及  $s \in [\tilde{I}_s/k, \tilde{I}_s]$ ,其中  $k \ge 1$ 。 对方程组做如下处理。

对无量纲总张力做与 2.2.1 节一样的处理, 摆脱初值对  $\theta_0$  的依赖;同样取消式(1)中表面积 以及体积的计算;不同于式(4)中  $\tilde{a} = 0$ ,在升空状 态下, $\tilde{a}$  为一个大于零的未知常数,因此将  $\tilde{a}$  作为 变量,添加到方程之中;为保证连续性,第一段的 终值等于第二段的初值。整理后,得到如下气球 模型:

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}\tilde{s}} = -\frac{\tau_{\mathrm{b}}(\tilde{z}+\tilde{a})\tilde{r} + \Lambda\tilde{r}_{\mathrm{d}}\mathrm{sin}\theta}{\mathrm{cos}\theta} \\ \frac{\mathrm{d}\tilde{M}}{\mathrm{d}\tilde{s}} = \Lambda\tilde{r}_{\mathrm{d}} + \tau_{\mathrm{b}}\cdot\mathrm{sin}\theta\cdot(\tilde{z}+\tilde{a})\cdot\tilde{r} \\ \frac{\mathrm{d}\tilde{r}}{\mathrm{d}\tilde{s}} = \mathrm{sin}\theta \\ \frac{\mathrm{d}\tilde{z}}{\mathrm{d}\tilde{s}} = \mathrm{cos}\theta \\ \frac{\mathrm{d}\tilde{a}}{\mathrm{d}\tilde{s}} = 0 \end{cases}$$
(5)

其中, $\Lambda$  视为控制量,代价函数为 $J = \tilde{a}$ 。初值条 件为:当 $\tilde{s} = 0$ 时, $\tilde{r} = \tilde{z} = 0$ , $\theta = \theta_0$ , $\tilde{M} = 1/(2\pi)$ ;终 值条件为:当 $\tilde{s} = \tilde{s}_f$ 时, $\theta = -\pi/2$ , $\tilde{r} = \tilde{M} = 0$ ;同时 为保证连续性,满足

$$\begin{bmatrix} \theta \\ \widetilde{M} \\ \widetilde{r} \\ \widetilde{z} \end{bmatrix}_{\left(\frac{l_s}{L}\right)^-} = \begin{bmatrix} \theta \\ \widetilde{M} \\ \widetilde{r} \\ \widetilde{z} \end{bmatrix}_{\left(\frac{l_s}{L}\right)^+}$$
(6)

对于 $\tilde{r}_{d}$ 的处理,一种思路是将式(4)、式(5)联 立,这样 $\tilde{r}_{d}$ 就可以被精确地表示,但这样方程组过 于庞大,计算量会增加。因此,本文利用 MATLAB 自带的插值函数 interpl,将计算平飞状态得到的 $\tilde{r}_{d}$ 与 $\tilde{s}$ 的值做插值拟合得到 $\tilde{r}_{d}$ 关于 $\tilde{s}$ 的函数 $\tilde{r}_{d}(\tilde{s})$ , 这样既能准确表示 $\tilde{r}_{d}$ 又不会增加计算量。

2.3.2 升空状态球形数值解

与完全膨胀球形方程不同,升空状态的气球外 形数学模型除 $\theta_0$ 外,还有自由度 $\hat{a}$ ,而由于此时有 总弧长不变的约束,正好抵消了自由度 $\hat{a}$ 。故只要 找到满足终值条件的 $\theta_0$ 与 $\hat{a}$ ,就能得到该方程组的 唯一解。此时,在 GPOPS – II中不同球形需要调整 的参数只有 $\hat{M}$ 、 $\hat{r}$ 、 $\hat{z}$ 的最大值、 $\hat{a}$ 的最小值以及k(记 这五个参数为一组升空状态计算参数),相较于前 人需猜测数十组参数的多重打靶法简便不少;参数 数目固定,便于通用算法的设计。

由于当*τ*<sub>b</sub>≥10之后,*θ*<sub>0</sub>基本等于零,此时无 法用四阶龙格库塔法验证,文献[10-11]分别采 用打靶法、多重打靶法,得到的计算结果基本一 致,因此从侧面证实了计算结果的可靠性。表3 给出了本文与 Baginski 计算结果<sup>[11]</sup>的比较,可以 看出,两者的计算结果基本一致,说明了本文计算 方法的有效性。表4 给出了 $\Sigma$ =2.0时,气球升空 过程参考计算结果。图3 给出了 $\Sigma$ =2 时的"自 然形"气球从地面(海拔为零)到升限高度(海拔 为20 km)的归一化升空外形曲线。从表4 以及 图3 可以得到球形随高度变化规律:随着气球升 高,零压面高度减小,气球高度减小,最大半径增 加,在16~20 km处球形变化剧烈。

表 3  $\Sigma = 0.4$  的计算结果

|                  | Tab. 5               | Calculatio | n result   | 1  for  2 = 0.2             | ł             |
|------------------|----------------------|------------|------------|-----------------------------|---------------|
| ${m 	au}_{ m b}$ | 本文<br><i>θ</i> ₀/(°) | 本文 ã       | <i>k</i> 值 | Baginski $\theta_0/(\circ)$ | Baginski<br>ã |
| 1.0              | 67.920               | -0.000     |            | 67.906                      | -0.000        |
| 1.1              | 50.937               | -0.470     | 5          | 50.916                      | -0.470        |
| 1.2              | 40.616               | -0.650     | 5          | 40.600                      | -0.650        |
| 1.3              | 33.231               | -0.763     | 5          | 33.214                      | -0.764        |
| 1.4              | 27.613               | -0.846     | 5          | 27.602                      | -0.847        |
| 1.5              | 23.191               | -0.912     | 5          | 23.182                      | -0.912        |
| 2.5              | 5.276                | -1.253     | 4          | 5.270                       | -1.254        |
| 6.0              | 0.098                | -1.654     | 4          | 0.098                       | - 1.654       |
| 15               | 0.000                | -1.965     | 4          | 0.000                       | - 1.965       |
| 40               | 0.000                | -2.213     | 4          | 0.000                       | -2.213        |
| 100              | 0.000                | -2.384     | 3          | 0.000                       | -2.384        |
| 200              | 0.000                | -2.484     | 2          | 0.000                       | -2.484        |
| 300              | 0.000                | -2.532     | 2          | 0.000                       | -2.532        |
| 400              | 0.000                | -2.563     | 2          | 0.000                       | -2.563        |
| 500              | 0.000                | -2.585     | 2          | 0.000                       | -2.585        |

| 表4 Σ: | = 2.0 | 时.气 | え 球升 | ·空过程 | ≹参考 | 计算 | 结果 |
|-------|-------|-----|------|------|-----|----|----|
|-------|-------|-----|------|------|-----|----|----|

| Tab. 4 | Reference calculation results during |
|--------|--------------------------------------|
|        | balloon ascent for $\Sigma = 2.0$    |

| 高度/km | $\theta_0/(\circ)$ | ĩ 最大值 | $\tilde{z}$ | ã       |
|-------|--------------------|-------|-------------|---------|
| 0     | 0.000              | 1.418 | 8.987       | -6.925  |
| 2     | 0.000              | 1.517 | 8.891       | -6.708  |
| 4     | 0.000              | 1.630 | 8.780       | -6.467  |
| 6     | 0.000              | 1.758 | 8.651       | -6.197  |
| 8     | 0.000              | 1.906 | 8.499       | - 5.893 |
| 10    | 0.000              | 2.077 | 8.315       | -5.545  |
| 12    | 0.003              | 2.305 | 8.058       | -5.098  |
| 14    | 0.065              | 2.596 | 7.702       | -4.536  |
| 16    | 0.826              | 2.941 | 7.226       | -3.877  |
| 18    | 7.297              | 3.361 | 6.515       | -3.034  |
| 20    | 89.067             | 3.915 | 4.717       | 0.000   |



图 3  $\Sigma = 2.0$ 时,部分高度球形曲线 Fig. 3 Balloon profile for partial hight values while  $\Sigma = 2.0$ 

# 3 通用算法设计

从 2.2.2 节的计算分析可知,对于完全膨胀 状态的"自然形"气球只需计算  $\Sigma \in [0,2.0]$ 即 可,经过测试,取表 5 的参数( $\hat{r}$ 最大值恒为 20)便 能计算任意  $\Sigma$ 的球形。

表 5 平飞状态参数取值

| Tab. 5 | Parameter | value | of | $\operatorname{design}$ | balloon |
|--------|-----------|-------|----|-------------------------|---------|
|--------|-----------|-------|----|-------------------------|---------|

| Σ         | Ĩ 最大值 | ž最大值 | l <sub>s</sub> 最大值 |
|-----------|-------|------|--------------------|
| 0~0.69    | 1 000 | 2    | 5                  |
| 0.69~0.93 | 100   | 3    | 5                  |
| 0.93 ~1.1 | 100   | 3    | 6                  |
| 1.1~1.2   | 100   | 3    | 7                  |
| 1.2~2.0   | 100   | 6    | 11                 |

在计算升空状态的外形时发现, $\hat{r}$ 最大值以 及 $\hat{M}$ 最大值对外形变化敏感度低,可以令 $\hat{r}$ 最大 值恒为平飞状态的无量纲最大半径, $\hat{M}$ 最大值按 经验设定(当 $\Sigma < 1.5$ 时, $\hat{M} = 10$ ;当 $\Sigma \ge 1.5$ 时,  $\hat{M} = 100$ )。结合 2.3.2 节中球形随高度的变化规 律,对于其余升空状态计算参数,采用迭代更新的 方式获取,即若已知气球在某一飞行高度的球形 数据,则利用此球形数据得到飞行高度在此高度 之上的球形计算所需的升空状态计算参数,具体 如下: $\hat{z}$ 的最大值等于球体高度, $\hat{a}$ 的最小值等于 零压面高度的负值,k 为母线总长度与 $\theta = 10^{-3}$ 对 应的弧长的比值,设计如算法 1 所示。

| 算法 1 球形计算通用算法<br>Alg. 1 General algorithm of shape calculation                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>已知</b> :在 $\tau_{b} = m_{0}$ 时,21 组不同 $\Sigma$ 的升空状态计算参数,<br>其中 $\Sigma \in [0,2]$ ;各 $\Sigma$ 气球的平飞状态球形;所要计算<br>的球形控制因子 $\Sigma_{0}$ 以及高度转换后的体积比 $\tau_{b_{0}}$                                                                                  |
| <ol> <li>对各升空状态计算参数做插值</li> <li>计算 Σ<sub>0</sub> 时,τ<sub>b</sub> = m<sub>0</sub> 的球形,记 sp<sub>1</sub>, n = 1</li> <li>设定节点 m = {m<sub>1</sub>,m<sub>2</sub>,m<sub>3</sub>,…}及 r、M 的最大值</li> <li>if τ<sub>bo</sub> &lt; m<sub>a</sub> then</li> </ol> |
| 5. 获取 <i>sp</i> <sub>n</sub> 的 $z$ 最大值 $(a \ Q \ \theta = 10^{-3}$ 对应的弧长 $l_n$<br>6. 令 $k = l_s / l_n$ ,将 $z$ 最大值 $(a \ Q \ h)$ 值 $(k \ E)$ 新<br>7. 计算 $\tau_b = m_n$ 时的球形, $n = n + 1$ , return 4                                                   |
| <ol> <li>end if</li> <li>if τ<sub>b0</sub> ≠m<sub>n</sub> then</li> <li>10. 重复步骤 5~6,计算 τ<sub>b</sub> = τ<sub>b0</sub>的球形</li> </ol>                                                                                                                 |

- 11. else  $\tau_{\rm h} = m_n$  即为所需球形
- 12. end if
- 13. 计算结束

其中,算法1中21组升空状态计算参数见表6,  $m_0 = 500_{\circ}$ 

| Tab. 0 | Calculating | g parameters v | alue of fift-off | state |
|--------|-------------|----------------|------------------|-------|
| Σ      | r 最大值       | z 最大值          | ā 最小值            | k     |
| 0      | 0.20        | 2.00           | - 1.85           | 2     |
| 0.1    | 0.20        | 2.20           | -2.00            | 2     |
| 0.2    | 0.20        | 2.40           | -2.20            | 2     |
| 0.3    | 0.20        | 2.60           | -2.40            | 2     |
| 0.4    | 0.20        | 2.80           | -2.70            | 2     |
| 0.5    | 0.20        | 3.20           | -3.00            | 2     |
| 0.6    | 0.20        | 3.50           | -3.30            | 4     |
| 0.7    | 0.20        | 3.95           | -3.70            | 4     |
| 0.8    | 0.20        | 4.30           | -4.10            | 4     |
| 0.9    | 0.30        | 4.80           | -4.40            | 4     |
| 1.0    | 0.30        | 5.20           | -4.90            | 5     |
| 1.1    | 0.30        | 5.65           | -5.30            | 5     |
| 1.2    | 0.30        | 6.15           | -5.70            | 5     |
| 1.3    | 0.30        | 6.60           | -6.10            | 5     |
| 1.4    | 0.35        | 7.25           | -6.75            | 5     |
| 1.5    | 0.35        | 7.65           | -7.20            | 5     |
| 1.6    | 0.35        | 8.10           | -7.50            | 5     |
| 1.7    | 0.47        | 8.50           | -7.90            | 5     |
| 1.8    | 0.47        | 9.10           | -8.40            | 5     |
| 1.9    | 0.47        | 9.60           | -9.00            | 5     |
| 2.0    | 0.47        | 10.00          | -9.40            | 5     |

表6 升空状态计算参数取值

c 1. c. cc . 1 ...

根据测试,算法1对常用 $\Sigma$ 以及任意整数 $\tau_{\rm h}$ 均能完成计算,且平均用时 20 s 左右,而用文 献[12]的方法至少需4 min(相同计算机),且计 算时长对初值的选取更敏感。本算法在计算代价 上已大大减小,且无须猜测参数,便于快速获得大 量所需球形数据。

#### 4 结论

本文对"自然形"气球外形方程求解进行了 系统性分析,将原问题进行无量纲化处理后转换 为最优控制形式,借助 GPOPS - Ⅱ工具,对转化 得到的最优控制问题进行求解。计算结果与文献 数据对比表明了所提方法的有效性。随后分析球 形数据,设计了通用算法。该算法虽需通过迭代 计算球形,增加了计算时间,但取消了调参过程, 且相较于多重打靶法,计算代价已大大减小,便于 工程应用。

## 参考文献(References)

- [1] 田莉莉, 方贤德. NASA 高空气球的研究及其进展[J]. 航天返回与遥感, 2012, 33(1):81-87. TIAN Lili, FANG Xiande. Research and progress of NASA's balloon[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(1): 81 - 87. (in Chinese)
- UPSON R H. Stresses in a partially inflated free balloon-with [2] notes on optimum design and performance for stratosphere exploration [J]. Journal of the Aeronautical Sciences, 1939, 6(4): 153 - 156.
- YAJIMA N, IZUTSU N, IMAMURA T, et al. Scientific [3] ballooning[M]. New York: Springer, 2008: 19-32.
- SMITH M S, RAINWATER E L. Optimum designs for [4] superpressure balloons [ J ]. Advances in Space Research, 2004, 33(10): 1688-1693.
- Batchelor G K. The scientific papers of sir geoffrey ingram [5] Taylor [M]. London: American Institute of Physics, 1963: 21 - 22.
- [6] SMALLEY J H. Determination of the shape of a free balloon: scientific report No. 2: AFCRL - 64 - 734 [R]. Massachusetts: Air Force Cambridge Research Laboratories, 1963.
- [7] 姜鲁华. 大型高空气球的球形设计及形变与变工况研 究[D]. 北京:中国科学院高能物理研究所, 1991: 22 - 30.

JIANG Luhua. Shape design and deformation with variable operation condition research of large high-altitude balloon[D]. Beijing: The Institute of High Energy Physics of the Chinese Academy of Sciences, 1991: 22 - 30. (in Chinese)

[8] FARLEY R. BalloonAscent: 3 - D simulation tool for the ascent and float of high-altitude balloons [C]//Proceedings of AIAA 16th Lighter-Than-Air and Balloon Systems Conference, 2005.

- 第4期
- [9] CARLSON L A, HORN W J. New thermal and trajectory model for high-altitude balloons [J]. Journal of Aircraft, 1983, 20(6): 500 - 507.
- [10] SMALLEY J H. Balloon shapes and stresses below the design altitude [R]. Colorado: National Center for Atmospheric Research, 1966.
- [11] BAGINSKI F, WILLIAMS T, COLLIER W. A parallel shooting method for determining the natural shape of a large scientific balloon [J]. Society for Industrial and Applied Mathematics, 1998, 58(3): 961-974.
- [12] 杨燕初,张航悦,赵荣.零压式高空气球球形设计与参数 敏感性分析[J].国防科技大学学报,2019,41(1): 58-64.

YANG Yanchu, ZHANG Hangyue, ZHAO Rong. Shape design of zero pressure high altitude balloon and sensitivity analysis of key parameters [J]. Journal of National University of Defense Technology, 2019, 41(1): 58-64. (in Chinese)

- [13] MORRIS A L. Scientific ballooning handbook [M]. Colorado: National Center for Atmospheric Research, 1975: V4 - V8.
- [14] RAO A V, BENSON D A, DARBY C, et al. Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase

optimal control problems using the Gauss pseudospectral method[J]. ACM Transactions on Mathematical Software, 2010, 37(2); 22-39.

- [15] DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods, 2011, 32(4): 476-502.
- [16] 王璐. 伪谱法在最优控制问题中的应用[D]. 哈尔滨:哈尔滨工业大学,2014:1-3.
  WANG Lu. Application of pseudo-spectral method for the optimal control[D]. Harbin: Harbin Institute of Technology, 2014:1-3. (in Chinese)
- [17] 彭祺擘,李海阳,沈红新,等.基于 Gauss 伪谱法和直接 打靶法结合的月球定点着陆轨道优化[J].国防科技大学 学报,2012,34(2):119-124.
  PENG Qibo, LI Haiyang, SHEN Hongxin, et al. Lunar exact-landing trajectory optimization via the method combining GPM with direct shooting method [J]. Journal of National University of Defense Technology, 2012, 34(2):119-124. (in Chinese)
- [18] BENSON D A. A Gauss pseudospectral transcription for optimal control[D]. Cambridge: MIT, 2005: 117-124.