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Research on the optimal matching method of configuration and
trajectory for morphing aircraft

WU Zeping!, MA Shuaichao®*, LI Jiaxin®, ZHANG Xiaofei®*, GAO Jingwei’
(1. College of Aerospace Science and Engineering, National University of Defence Technology, Changsha 410073, China;
2. War Research Institute , Academy of Military Science, Beijing 100000, China; 3. College of Electrical and Information
Engineering, Hunan University, Changsha 410073, China)
Abstract: The coupling effect between geometric configuration adjustment and flight trajectory generation in morphing aircraft
is found to lead to issues such as a sharp increase in trajectory design variables. A gliding morphing aircraft was taken as the
research object to analyze the configuration-trajectory coupling characteristics. A configuration-trajectory matching design model
was established. A multi-fidelity aerodynamic approximation modeling method for morphing aircraft was proposed, and the
dynamic equations considering the configuration-trajectory coupling effect were constructed. Based on a surrogate model and
sequential quadratic programming, a configuration-trajectory integrated planning method was developed to conduct the matching
design study, resulting in the optimal morphing design scheme under the best trajectory. The maximum range achieved by the
variable-sweep-wing-span scheme is 2.16 times that of the fixed-configuration scheme and 1.26 times that of the variable-sweep
scheme, thus verifying the effectiveness of the optimal configuration-trajectory matching design method. Methodological support
is provided for the overall design of future intelligent morphing aircraft.
Keywords: morphing aircraft; configuration-ballistic matching design; parametric model; improved sequence approximation

optimisation
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Fig.2 Ballistic schematic of a gliding morphing aircraft
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Fig.6 Hybrid ballistic planning methods
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Tab.5 Control parameter values for variable sweptback-
wingspan ballistic matching design scheme
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Tab.6 Status, control parameter setting
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Tab.7 The value of the control quantity at the discrete point
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Fig.8 Stress-strain curve of adhesive epoxy for different
days of immersion in water
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