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A review of online reinforcement learning control for systems with
unknown models: theory, methods, and challenges
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(State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University,
Hangzhou 310027, China)

Abstract: In the fields of intelligent manufacturing, aerospace, and robotics, control systems often operate under unknown
dynamics. This significantly limits the effectiveness of traditional model-based control methods. RL (Reinforcement learning), as
a data-driven intelligent control approach, enables policy learning and optimization through interaction with the environment,
showing great potential for solving optimal control problems in such model-unknown scenarios. This survey focuses on the issue
of unknown dynamic models in continuous-time systems and reviews the development of general reinforcement learning
algorithms and their application in model-known scenarios through industrial examples and theoretical analysis methods. It also
summarizes representative methods for model-unknown scenarios, such as model-based RL, off-policy integral RL, and
Q-learning approaches. The survey introduces Lyapunov-based theoretical analysis tools and important assumptions. It discusses
cutting-edge topics such as RL under partial observability using large language models, safe RL, and stability and robustness
enhanced RL, while highlighting the challenges faced by existing methods.
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L, X R B s R4, TURE yFEE
[EREEE i 8 Sy R ERESR A R

V7 (x(k)) = miny, gy {U (x(k), u(k))
+V T (x(k+D)},

Hrr, x(k) fRERGE KIFZINIRE, uk) fE
PEHIFRTE k T ZITHE I EHIE S, U RIEE ML
FIER% GEH A X Sx+u RuMER) , VL%
RIERE  x(k+1) = F(x(k),u(k)) 8% 255
Ao FBRALEE ST RO B A I, #5015
HROE R SR I R R i MR, B
SRR E RS,

KA EIRITREITH SR A BERIR S Y L B4R
HouK, HAMES L v, MELLSE R o
NI, Werbos & H 38 i bR 50E I 45 73 791 15 IE 2R
BORZE R V(X) 5a0(X) , FEAEL T H
= DAS /M DUR 2k 2 15051,

E =U(x,0)+ WV (F(x,0)) =V (X), (13)
X5 R (12) I m e A N IE (A%
X, BEE T IET ADP FOEE SRSl B e 4% 1 FE At

HL A, Werbos $2H 18 & Azh A BeIAn — ok
JE R BRI, 73 38 1 Ao 4 o 2 S R bR

(12)



B HMAE . a8 ORI T 2R Q &= 2 il
#i  Bh AR, i I S S g Critic
W 2% DA 5 B ML, E— 20 ik, Prokhorov %%
NFE A e ki R SRR B AR AR, it [F]
3 T A PR AR S L B AR FAE T . DA TR
Al LLAZEA Actor-Critic 2584, AMRE L,
Padhi %5 A\ H L 2% 5 & Critic 77709, @it
AN Critic PZEECE PGB RS I, &
TSR

MAEESN I Eh& R G, BAtEh] 7Rt
mEo% R tmo- fE oW oWk - DR B
(Hamilton-Jacobi-Bellman, HIB) J5 &k,

min,. 4 {u (x,u) + (VW) T F(x, u)} =0. (14)

R T B B TR AH ST iEAN ], X IR
) R G Lz il R e (s At o) B0 B s e 28
SRR E ER0S, BLZE AR, O SR
AT SORBGIEA B 2R sk i Hid HIB T
T (141620, 2002 4, & hnph #E T 2=B ) Murray
SENE EIRIES RGN i d A R T —
FET AL ADP J7vk, FHAERIGa R e s Hil 1
A NIRRT R Guha e PR AN S 1], 2005
T, Lewis S5 NCKRHEHE IR B IR BB %
TS ZRRIRIE AL, ORI SRAF 1 420152 PR
GLINF[7] 22 45 fp I A2 i ) 3

2010 /£ 45, Vamvoudakis 1 Lewis i I$2
W7 — Bl 0 4R 2 11 05 I R G AR 2 H IS MY
ADP %y (synchronous policy iteration, SPI) [64],
SEHL Y Actor A Critic 28 (K 7E LR SE BE#r, I
T R E EIE M . SPI SR A A N 4%
V(x) =W, ¢, (x) 55 0(x) =-0.5R g 'V, ()W, 43
WE I AR B d . e, W, FIW, 4351
R Critic IZ5H1 Actor MIZRIIRLE, ¢, {0
EiRA

SPI I Z N 28 S H T i TE N

W, =01 -7 (oW, +U (x,0)),
mS
N (15)
A A Fo' DW.o' )~
W, =—a,| FEW, —| 12—+ a W, |,
a 2( 2"%a { ms 4m52 ] CJ

H, o Ma, NEE, mg NIENALDL, Al
F, NS EUERE, o f1 D e A HLJESCsA,
JUE SPI ANTEEYIIRR e ], (B —Lem AR 25
RS E G HHSHR A PR AEBLES-661, 2015 4F
A, Liu Al Wang 25 A F2 HITE Critic W25 1 5E 37
IR T, FERUA VIR ) 2 1R

FI RIS fai A T ER &), FHHRIE T RS kae it
(67681, [ Fii 5 1R 2 24 AR P IX R Bdk i) & .
Critic J7 AR IZE SR 8] R Ge B 2] ) giloe-71l,

3.2 ETEUE IR MIRER

AHEE T 8, BRER IS T B RGURES
X(t) SEB ER BRI AR S I % (1) » PR B A
Mo BT xg (8) EHERIERN, FILTEe iz
EICe I AV PSR S S e TR EI 1 e s N i
9 i) 2 O 2 — M L IR AR PE2 7, BT DAAH
T s i, LT omA s > A B
R FEAFAEN B . 2011 4E A4, Zhang 25 AR
T PR LR MR R 8] R Gt B IS N AR A R ER S
Hl AT, HdR A TR TR A M RS
HER A AT HIE PR IR ER 1R 22 . 2014 4F, Modares
SENEUCER TN Cpy>0) 1R
PRIEL,

J :%Loo

W% RGBS RGNS HES
FIIEYE R, W RRIIfR R T & RSt iR
BRI RS, R4, AT ORI TNk T
WA 2 BRI FE LM R I AT ERER ) 8, FRff
R sk IR IiAk. Actor-Critic P25 A E
(761, 3 oo b 47 40 PR RS | R G0k R B 1) i
AR [ ) VA fR AR 2 TARRIRH, )
FERUAS T 5 B R -8,

FINYTHI R T EAR R T AR BRI BEE I
(AR ARG TE 55 KRR, (E[RIFEREIR T #ria iR
EEPERT, SEHIIRESIRER, TEk, tfg
F RS H A ZRA s ) S5 A AR BB
T P R . 40, Na &8 AR FHTEZR PR
TR I g ) T B ER R R 221885 Li il Wang 25
NBTE T8 RO s R B HUR e BRI 17
B85, Ik AR RN 2 ) BR B R ZE NN R R
B, LR YTIIE 7RI T BB 2
Sereshki &5 AR T RUCH eR I 2 05 18 1 R0
P I, T G SR fif HIB J7 F26871, e,
gl AR B R ER R 22 2 H BT BCARAT I
188920 X RITIE SRR R B SN
HIBhAS L5,

e 7Y (x—x4,u)dz,  (16)

Ly ]
{ J—th U(X—Xq,A(s)u)dr, an

—gP p-1
A(s)=s"+as"  +--+a, 45+,

Forb A(s) RS H L RHFFIEZ T (s A
RMAET) , —RERAGS)Xg =0. ATLLES]



RRIET W BLF BT TR AT S INBIME
PrinE T, ARIESACT R Bl [ T
T3, BERINSHEILA RIS R AR,

MR, AR T IR ST R A T
PAEEIR R UGS R, (HGR ) T8
EORXAENS GBS A E 7RI T #. N
Jite (12) M (14) WUER], itk B iis
SR RS, R P AR i R G
F(x,u) SR, X RARIRE] T 9m il s > 78 TRESE R
FRORLFVERE o PRIE, TR TR 2L I ] A i
SRR T3k, T E RSG5
AR ARG DL e P fir D0 425 11 1) AL FF) B 7 R
o

4 ERERERMGTEMEFIBRULSE
7%

IEWIRTSCATR, TS o RGN B)
SIS — B ERATENE, E— 143
()R o 18 T VAR X AP O R HAE R o E1XF
X, ENSMEEITRE TORE TR, FEH
SRUNATE 2R 48 8)) A B 31 7 55 4 2R R0 ) 4% 0
T, i EE IR S 0 7 PR A e L ) e R
I

AR, DS A HEZEMET 5 R4t
i

x=F(xu) = f(x)+g(xX)u, (18)
Hp f(x) M g(x) R R RABE R 1E
WSS LSRR, 38 OB AR A 1) 5 ERT ] e A2 B
FHELEMR S . SEUAHE PR AR ) A 2504,
B, B AT BERE S A Ap 591 R
W Hh AT P A REVE IR BEATLI BN 0T, b T R b s B
AR P 5 A TR A (OB OUANTf s S [ 2R vl g i
JRAR GRS ARA

ERxpan= (18) RGMIARFBE RGN
i) i) A, ARG SR AR T H T = SR L RERAT T
BT BRI R o) . BRI A ) DA K
Q 2. FHPEH&IRIX = KT Hg s, JF
I R A X ER S H 0B,

4.1 ETHEBERENEF S

R >] (model-based RL) F&
— P E MRS, RRJext=X (18) RGTitATHL
PEORBN AR, SR JETE AT AR St A
— BRI R LS S L. AR
T fE /& Bhasin % A 7 2013 4F #& i 1
Actor—Critic-ldentifier ZEA4L001, AHEL TR SCH2 5]

i1 Actor-Critic J53%, % HEZ T —METIEHR
MBI RGN BS R G, HAAER
N

R=W{o(V{R)+g(u+u  (19)

He, oA (19) FHRBIRE, W, fV, #
SEAHEESE, R FRIE LR ZE RS S
31

ORI NS SR 5 (19
HEHRE AT LUZHTHEIL I (18) REIHIE L.
RltE, (19 A LMRE AR KN (18) %fiBh Actor
Al Critic MZ2E2] . R EI (19 FRRgs R
W g(x) O A1, S2br EA IR L HAhPHR st
A DLERBHX — 5. f5l1, Modares 25 A A% FH AN
TR IR 28 23 IR £ () A g(x) , Tk R Gisha
B SR [F] VE T g A 72 T O, HA R ALL Y
T3 AT LS HRIE3 102104155

SRS, TR 5k 2 3] B A
T ik Actor—Critic-ldentifier 224y, HHETRIK
oy TARRREE R IE RGNS R B FREE
=, BTSN E S, HEERK,
HERBS VIR BE ] BE 7R L B 2R A, “AEZRit:”
AR, AL, RGPHRES AT DUE RN —Fh AR
R R —SERRA M SR, DR AR A 2
FIFEAMRE &, X — ST N — DRt

[104-105]

4.2 BEREERFASTIRULE S

XRTTETC TR RN R G ATHER, 12 A
s ok BN 7 B e S s E R 43 . 2009
F, Vrabie £ N & /cHE T m ik~ ] CGintegral
RL) [P oel, HAz.o 8RR K HIB 72 (14)
e R S AR

V(X)) -V (x(t-T))
+ U (X(0),u"(2))dr =0,

b, TARFERFIXE, u™(x) = -0.5R g "'VV ™ (x)
REFBAFEHIE .

AT (14 , B IURETHE
(20) [FFEZIT LR AEAK I R S AR M Bh &
F(x,u) FIRTHE T, 18RS 8da R AR Al T R
IRk Critic W%, HBWIIA 58t 22 S5 75
HE)ll4y, JE%E Modares F1 Vamvoudakis 25 A
gh4 SPI AR T RS & M ARA AR 73 5 dk
2 S 0T8T AR, H TSR A A A R AT AR
P RRF g(x) , ARG ) H R R R G
I3 BIAS AR F S L | [ R

(20)



NT DI RGN SE RN
%, Jiang Al Luo 25 N0 RITE 2014 AF 70 A3 HY
TSRS Ry snika2 2] (off-policy integral RL)
[109.110] Hy 48 T H K. ATEM “Bng” 2

B B AR T LA AT R SR R B B A T
Yk, MIREEAR ST Bl 6 ASEBRER T R4
P U, (WRRAEIT ARG AH 75

x=f(x)+g(x)d+g(x)(us —0). (21)

FEFIF 2RU™(x) = —g " VV " (x) ix— EE LT AT
£ (200 , HPnf#ESun FIEaR DUR 2 5 72:
[y (z(u")T Rug - (u")"Ru"+8(x))dr )
V(X)) -V (x(t-T))=0
I J5 T LASE U I 4V () =W, ¢ ()
a(x) =W, ¢, (x) , AAATFE (22) J5arLAE S
IR S 5% 7
Et) =W, Agh (1) + vec(W,) n(t)
(23)
+vec(V\7a)T D(t)vec(V\?a)+ p(t)

HAFA4(O) =4O -4t -T), vec() REREL
HT, n(t). D) A p(t) BYEARIE AT ISR
[61,77]-

T L e (23D B AT I 2k
Actor-Critic %%,

W, = -, 2% W gy

T mi o
2\_ ()
vec(Wa)_ o, mf(t)E(t)

Hrlt, oy Ma, 2048, mg IENAETR . AT L
BH EREIRTEEATE RGNS LN
W, B ESAR 2 TR 2 R I, Gt
TR, BRI sl 2] SR IR F AT
NG ug REERRIE R, X2 TN 2
R ) — AR . FESEBRER T, AT RE R ST
K7 LBl 7 S s AN AT 2 B RE M)
AT NN o

4.3 Q%3]

Q 22 (B 1.2.2 FTHE B o a & =X
KD MEA—MAEMER S, ERRZ
T A9 A P Sk Ak T AR SR 28 FACNT ) 2R 45 1) 42 1) i)
(58.114-1161, SR, T SR g R T 30 HIB
TR (14) , EFWTRHESN [ RGN Q 245
BHEPREVEA BB, R Lee A1 Palanisamy

10

S NP AIAE 2012 4E A 2015 AFEFR H T BT AR B
WEEST Q 2SI HREMT I, fif ke | R SEIS
[AIZ A R GEH e L2l el i, (HZ 053k A RE R 2k
AUk B/ Z a6 R g . 2017 4,
Vamvoudakis % NFCENFRH T EELEI 8] R G207
2 Q AR EM,  HICTHWIsata e .

FHA SRR T8 SN RS ) RGEH) Q BRI
Q(x,u) =V (x*)+U(x,u) (25)
+HVV) T (F(x)+g(x)u).

AR (25) HARIS AR FNBNES f(x) Fl
g(x)» {HIEREQ(x,u") =V () Ix—KEEVER, 7]
DU TUR 8778200 #ESHLLT Q Ei%k
TR DUR 27 1%:

QX(t),u (1) - Q" (X(t—T),u"(t-T))
+f LU (X(@),u"(0))dz =0,

IS PRSP Actor-Critic P28 43 BI3& i u”™ Al
Q(x,u) » BIATSEBLAKH R sl A Y (P P26
o BOLJUAF, —F AR — PR ETIXH Q¥
I, (RS R R G I IE RS
E R L BRI A5 O T A TN AR
[120124) (HA3—FEME, BSHIEFAREG KT Q
R S I R e S s ), NI,
HEEMTER, ANMERTAN TR BB L Iaa i
%, B BRI TEL .

B, TEFR 2 HON AT BT R ) =207
ITX b gl . BARIX VAT — e R LR T
X R GG s SR I, AEA A S PP A
MIEREE . R, 7ERIHF Tl sl 2,
FEARCR SRR 5L S ST S A MRS, —. N
NS REARCRA LR, AR T ZRR
TEORRS, EEEFE: O PiHdEE S, F
B ANGI[E (replay buffer) B 2% 12541
i, S COABIENRIA S, B RS
H. 2) REGUIEIL G BHN00-100L104], fifi B 22 5 ) ) 2R
GBI BT AR IR AR, 1R S SRS UL
BNSSTHE . 3) iR SJ2r-1290, )| 255K
WL BT SS H, BUEAT S5 AL SRS SRR,
FRTHZARE S FF IR AR 7 2K . 4) Jos oJrse-1stl,
A B B AR AE T T 45 s T 3 /> A A T
N, CRCAIRTHREARCR I E B A 1. ik
T3 2 R] FRARO B SERRSR A EL AR, Ak 3]
TESEBR Tk R Ge b FRE A 11308

(26)
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Tab.2 Summary of online RL methods for systems with unknown models

ZES TR (U Bl AR
RGHHRA BT
1 ShE o Skt i B

5 EiRohStEnF

AL RGUHAREE T DSk 2% ST N 1 & A
Hike SR, HTRRI2E S 72 BN AR K E)
)« BEA” , Haet 50t a &5
BNV ST SE . DR, AT B TR R
— UL AR RS 21 75, AN Lyapunov FRE
PE. RIS AT SE MR, BB
HIA TR B AT e R REIL T, T RE
% B G b PR AR S SE B ASE FH EAT T

e R GiRa s MR SISl o 2 v
R w2 =DV AL O] (37 8

R ¥ 1061132, ff bR FV 7 (x) A0 AT 4 ol A
u(X) FEZEExe QR FAfLAFRIE U F L
S

. A Y
{v () =W, ¢, (X) +¢., o

U (%) =W, ¢, () +¢,

Horr, W, AW, 73 BIARER 4% [ ELARR R, ¢, 7
¢, REILREL, o Al e, DAREANE B UTALIR
ZE. [N, HRAEMZAEW, AW, « LK% g, F1
¢, VLSRR ZE ¢, Mle, fEEHEQ FIH T,
IR S A E A E b lck: E= S
(1331, ZEF 34T o i) LLORAIE 9 28 ZEURE BRI
(EAFFE R RZ AT, B RrE— RIS
TNH RO e R A A AR L TR, TR IE
P4 JR g e BRI AT R 25 1F . IR, JERREUE i
P B S i, Rt ey DR AHE )
BRBURAIEHAT St (9140 Sigmoid B tanh 30 B
¥ o BJa, L BB ELRE R RPIRES
HUIMRZAET Q o Q R/ INEH IS B Er %
TEVEEA G, AR — B L N IRMESE AT ZE H 1)
flit, HEEREMMERZAIIRESER. LR8H
B QJE, AR (27) "R TEOL. N5
Rz, AR D BRI,

11

T SR FE R e (A Fourier JEpR%L. 121
FEREIMNES) , EETELRFEINHDEST R Q
)78 T ya 138, 2) SR e asmib >, AR
GRSARMEQWN EILEE 6.2 1) , LABRR
GUIRASTE NN 2 AL BE I 55 1) [X k1391411

PRI BE 2 XHIE B S0 Wit
L, ZERBOEE IS 5 K78 BUh (persistently
exciting) H %, (HHEAEMEARE LM, XH
DAL — 5 HR 21 (1) B8 SRS AR 2 AL 5T el

B 20077 KD HFHIES p=[Ad 7' 1"
ST, BIETEIE R S, B, B, 1S T 5
K RAAEAE AT %) t #R RSO

B[ p(@)pT (T < pyl.

AR A 3 B B R RE I SR B 7 78 o
FIE R, R XL %A feldl. Sehr b,
sl ) FA TR ER R G TR N T 2 LR
Wo A, [HRGENREG TR 2 &
RYA N SP RS A s AL B S el M E il
e, XSGR E SIAE N R I — KPR . 2R
fEZ IR, AR LRI AT IS D 7RSS
W5l N & 56 A i 2 5 [F] 2P 2% 2] (concurrent
learning) D24 A, M s df vh e (5 B
HIREAS,  $m N ZRRCR s SRRl 75 k. 2)
J AR 5 Ak 2% 5 T v T DU FH e 45 o 24 A AR
(19 AENEH BRI ML, FH T4
TMETE . 3) TR SJ A2 1980 1o Fl R N TR 1T
R, 51 SR BRIARTE 2 A 4R R R Fud
B ESIE AT N, AR R W R 1% 4R
538

e, o B BRI b 45

SEE 16077, AR 1 AN 2 Ror, HATNSK
W ug BERE PRIE RGuAaE, I8 SRE AR 7y ok 3
Bk (24) W] LLARAE fh 4 W& A R
W, =W, —W, FIW, =W, —W, — LA 5.

WER R 1 FEeIE Lyapunov BR%L:
L =0.50;"W,"W, +0.50," vec(\W, ) " vec(\W,) , Kt

JAWE RGN L SRS HFIH Lyapunov 37 /&

(28)



SEFLSE RN, BAAEREN .

X EIREUR T EAAT A 1D RS
Fe e VORI T3 AT B0E B AT SR . HSt 1
K 2HRBINITE, BT EXRE M —E
FIRTHMR . 2) TSI iR ZE I AFAE,
W, FIW, S BEARAEUSEE] 0 K403k, [RILLATE )
IR 2z il R BRI AL, SEhn Al A AT
BESAFAEASSIRZE . AT S AL 2 S i R
IR E PE A SREAT R AR AR TR R e, R
St

6 MES%REE

JUE ISR 2 ) FE S AL il ) o EUAS
TEEE, (HHAE SRR TR RS BT
i 2 Pk X8 ) AR Tk 2 2] A B
FEARZCR ., ARSI S, B 55 R
XTSI 22 AR AR A T R T A SR A
Ko

AR T4 etz i iR i R GO
W, wRikE ] L EIR IR e 3, CHEH T
AbHE B R A B SBAR SR R S8 AR, M
RUSCERR T WL, 927 ) J7VEAE SR N HH B 5
H LR = RAZ OIS0 1558, RESE BTSN
AR T T dIg5,  Msiih s I PRES
BRI 2 B R . B NBRAL ST 22 R
Richard Sutton 7EH#/E (b2 318 1IE/a
fah, X BRSBTS 75 R IR T G
2N R A Rt ) I 5 = R I e Y R 7
AN S BRAK 2 3T BT 2R S S PR A
Fo s, EIIG R R Sk
ANATREZ I fGR AT N . NASA 78 H A AR bl
BT H = <oimfb 2% 2D [ 1A e A 22 4 SRR 2 W)
A A D44, 12 ) JLAE R AT i Fe 4 )
ARSI RY . )5, etk S et
WA BRI 2E 2] P n S I E RS . Mk
—HTEIR T AT AR Y, SRk ST Ui SR
58 M P S AR T an R e SR . B E R A
KO AR 22 BIRENR, 328 AT Jl 3 mT 42 P 0 8 A
Ao

BT iR, RSO ESEX =k
R RITRTT, RGBS TR ST TEOREE B
ATEs” “wafREpEIA L “fRettSerk
P 225 J T 26 B, JF 3 S LU ARER M
MRS D5 BTSN R
TERAEIY s 2)THI AR R R G 2 AmmAb 2% 315
3) ettt 5 EE R R ik 2E S Bk,

EENTEEIAR THERILE SIRRAIRE
HISCHT IR (K 2 B Al 27 5] Ok i (i &

6.1

12

GUIRAS AT 5E AW, SR 7E SR Tl 3z 51137 5%

X R LU . BN, EMF R RN
A TS, RESREE TS ER0L
BSEE., AEEEALIAEE . SR TR
AL AR E IR, B A AR RS T &
FEAER T B e 4514 ZEsmAb 2 S 45, 5t
FIXRAF EATEE RGO H R, 85 R
Gy AT /R AT R P sk A2 (Partially Observable
Markov Decision Process, POMDP) 4T & fi
(1481491, POMDP H1— & ¥) MDP f KX HI{ET 5
N T2 O, 1EAEHT POMDP H FIAEIIAS
T B SR AT R, SRS ) I 5 2 B B Tt .

TELERETE N, AR A N 24— R
FPACIZRE ST, REREIEI T s e 4] e sk i 5
MR E RGBIEIREE B LGN a i
HIEE R R, B 5 NI AT RGOS T
fli 1048500, SEAESR, S S B
FERE ST RSB 2540 5] NBRAL S STHESE, JeH 2
JEIL 5N Transformer 50485 F 4wt 2 A, M
3 S B m SR BOIRES (5 2, AT 5T
I3 RAS AT ) eI,

TEMLES NI RIGEAE. KE P RIRIZT
S, X R R s A ) O vk U
W53 RIS, 50, Decision Transformer fif % 5
SRTE T AL B AP 1) 25 A A s A AR, 3 e W
SRR D B P A EA T A, SR T A
B ML B B, Actor LR ISHTETRIN, (0%
TN R EATERS” ] “ A ARSI
RAEAFN52 . B —J71f, Trajectory Transformer )
H Transformer &5 #4845 SWLIIN BaZs 73 A1, ArR
HFEAKRBIEF A, M RIFIIREARRCR 5210
R 7058, aX ME Tk R T AR Ak 2 ST E R )
B NEE, RIS LI T Z TR 4 R
Ak, RN AR T (R Re g iR A 13 1
=R

>No

=] P Gl B N RTINS e R R TS
FE TV AR i i 2 Pk 1) BRSO
PER, HERRVFRIT A A 2) SO Bud Rk = w]
FERETE, LA AL TRERL X 2 e SR R
DR 3) MU NEZ R LN 2k, AR R
FELR S ENIRE ). PRI, ARSRIIHE 7T/ e
B HIREENE . 2 A T RN PSR
AL SIHESE, RV R R e T Bl 2k
Tl SR A 4 55T Nai st Ik
BLHL PERECRIRSE 2S5 TR T AR AR LAz i
HRE AR S R rIATVE, HEBIsRILSE ST T
HEA TR RAER I R G SR .

6.2 MEERBERMAGHREEBULFS]

AR A2 L BT 1 i I S0 R G088
ENME SRR ALIRE 1. SR, ET 4.0 I



o Bt R T R IR, anf]
FEATEAE T S22 SRR E R, ©
BN REIE S i R b OBk . BT %
N, R RGURE x TIGA RS %
2 TAEEAN Ch(x)=0) , BlanfERELetl T2
o, RERERIFYREREME, (AHBEEhTEHE
WIS B ERE BRI, DUBE e il WE, X
I i) e AE B o bR DL R T 32 PR AR AR 4
(constrained optimal control) [r] i,

YT RGENSERARANEY, BEKREZ
FRE IR M AN . — 7, SEPR RgA
Sae B ARG W e S, Fn B shasR
RURED, FEAEHIERTCTE A AARAS AT HER T
W, WECEIR AT RS . 55— 07, R
SIRAET “aldh” ML, HaRR
FEA G A B AR AL AAT N, CHAE I >T By
BRI ) Ay, X R RGN R .

RN Rk, AR I T 2 A [
RURM RGN 22 2 07k H BhR2 ek
ISR R 0 RGUIRS AT A LR, HitRE
) SRS 22 AT R . — PR DL R R A R R
LRI R, BIZERCH BB s N 5 RS 200K
FHOGHAEST I, 45 2R A2 S0 1) T A Bl /2 2
IR M o X STV o B TR iR 2 S HE e,
FAH s B 3R g tn T p aRee-14n,
rh(x)
yh(x)+1
HrR AT U SR R O MR R AR, MRS —
W5 ZFLHRh(X) 20 H K. HRGURSKEE
RETRI, U @l TIE558, AImafE 24: 00
B RIBATIE RN . XITTIESLILfR L, AR
EANRE PR BB, TRIESR AL ) A
PEORAIE .

D9 SEI B SR ) 22 At ORBE, TR RS R
B BRSO EI AR BT 2 K. fal b
5 R AR AT A RS, BRRS LR AL A
FEHAMANLIR, IR IE — S22 e AT, #iR
RGILIRLAE T2« AEER KB 5
XEIEIE T SHAMEERR G, iy >)
Actor P& ¥ AR iz s, 1 el G
BRI B 22 IR AR AT B IE . X AN 2K
it T ] SEHIER e AR ERR ), O
TEH B S8, L NSRS o S R SOk
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KA E R TSR T ik, A
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H T, K2 > Sk ARk & Ak )
URFRE IR VIR SRS ” 1R, BIEESR Actor
EAEV AL REAE Bl —ME R Guha e Itz il
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R LA 2« BEE—2DHh, RISt 2
AR T Br it g T, il SRS AR 4 17
IR AN B I GER AL B A R e I
R, RINHEZEMIZACRE ST, Bk, W fEm Ay
RENZEAE T R TF oA 2 =) 58 W 1 Ao e PR RN
PE, A ET R ARSI TR O i) 2 —

T FRRATTAE A [ 8, 5o L T AR
22\ Lyapunov BN T, I TCH VI H AR e 15
2% IS b 2% ST B PR R RN 1 R 4
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R — ML R IEE Lyapunov pR%Y
V =x"P%x . BijE, %80T 5 RIsA B R E]
R RARAL R B P

[ x (@) HIx(r) - 2(Ru(r)) " KIx(r)dz

=x" )PIx(t)—x"(t=T)PIx(t-T)
P =pPlic(H+S-(KJ) RKY)
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