A Mixed Algorithm for the Computation of Two-Dimensional DFT Using Fast Polynomial Transforms
Author:
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:
本文首先提出用多项式逆变换计算二维DFT的方法 (k2 是奇数或偶数分别讨论),然后再讨论混合算法。对于N×N(N=2t) 二维D F T,混合算法所需的运算量为 Mu=?N2log2N—?N2+N Ad=2N2log2N 与通常以2为基的二维 F F T (行列算法〉比较,加法次数相同,乘法次数减少约20-40%。
Abstract:
In this paper,first,We introduce a methed for computation of two-dimensional DFT by inverse Polynomial Transforms (When k2 is odd or oven,We discuss respectively). Then We develop mixed algorithm to compute two-dimensional DFT,the arithmetic operand of this technique for the N×N(N=2t) two-dimensional DFT is Mu=?N2log2N—?N2+N Ad=2N2log2N. As Compared with the conventional radix-2 two-dimensional FFT,this mixed algorithm requires less number of multiplications (decrease by 20-40%) and same number of additions.
参考文献
相似文献
引证文献
引用本文
蒋增荣.用快速多项式变换 (FPT) 计算二维 DFT的混合算法[J].国防科技大学学报,1983,(4):89-100. Jiang Zengrong. A Mixed Algorithm for the Computation of Two-Dimensional DFT Using Fast Polynomial Transforms[J]. Journal of National University of Defense Technology,1983,(4):89-100.