二维 DFT 和 DCT 的 Systolic 阵列
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Systolic Arrays for Two Dimensional DFT and DCT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    超级计算中一个活跃的研究领域是将某些有限和,如离散富里叶变换(DFT)、离散余弦变换(DCT),映射到多处理机阵列上。本文首先通过二维DFT的行列分解算法流程图,给出了计算二维DFT的二种Systolic 阵列:一种是由N1个处理器组成的线性阵列,所花时间步为O(N1N2) (设二维DFT为N1×N2长的),与行列分解算法在单处理机上顺序执行所花时间相比,加速比为O(N)(设N1=N2=N),这一结果无论是在时间消耗,还是在PE数量上都是目前最优的。另一种是由N1×N2个处理器组成的矩形阵列,所需时间为O(N1十N2),与行列算法在单处理机上顺序运行所花时间相比,加速比为O(N2)(这里仍假定N1= N2=N)。本文还给出了二维DCT的与二维DFT相似的Systoilc阵列结构。不难将上述阵列推广到多维的情况。

    Abstract:

    An active area of research in supercomputing is concerned with mapping certain sums, such as discrete Fourier transforms (DFT) and discrete cosine transforms (DCT) to multi-processor arrays. This paper presents two kinds of systolic arrays for 2D-DFT using the flow diagram of row-column de composition algorithm. One is a linear array of N1 processors (if the DFT is N1×N2), and it takes O(N1N2)time steps. The speed-up of this array over the sequential implementation of the row-column decomposition algorithm on a single processor is O(N)(IF N1=N2=N). This result is currently optimal not only in PE numbers, but a1so in time cost. The other is a rectagular array of N1×N2 processors and it takes O(N1+N2)steps. The specdup of it over the sequential implementation of the row-cotumn decomposition algorithm on a single processor is O(N2)(IF N= N1=N2). At last, the paper gives two systolic arrays of 2D-DCT,which are similar to that of 2D-DFT. Furthermore, these systolic arrays can be easily generalized to multi-dimensional cases.

    参考文献
    相似文献
    引证文献
引用本文

田泽荣,李晓梅.二维 DFT 和 DCT 的 Systolic 阵列[J].国防科技大学学报,1993,15(1):82-89.
Tian Zerong, Li Xiaomei. Systolic Arrays for Two Dimensional DFT and DCT[J]. Journal of National University of Defense Technology,1993,15(1):82-89.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1991-10-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-01-23
  • 出版日期:
文章二维码