基于神经网络的非线性控制系统自组织辨识
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金, 湖南省自然科学基金资助


Self-organizing Identification of Nonlinear Control Systems Based on Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文首先将自组织神经网络算法向一般化情形引伸, 接着把自组织过程应用到一般非线性系统的动态过程分类, 使得整个非线性系统能够按照输入输出样本空间的概率密度自组织, 成为许多具有不同分类核心和感受野的线性子空间逼近。在此基础上, 我们采用通用最小二乘算法, 以子空间的非线性问题线性化误差作为依据, 并进一步运用自组织神经网络的合作与竞争思想, 最终得到一般情形的非线性系统的最小二乘辨识。仿真结果表明了本方法的可行性与优越性。

    Abstract:

    This paper firstly extends the self-organizing neural networks to general case. Then the self-organizing process is applied to classify the dynamic process of nonlinear control systems. The nonlinear system is self-organized according to the probability density of the input and output samples and is approximated by many linear sub-spaces with different classifying centers and receptive fields. The self-organizing least squares identification of nonlinear systems is constructed based on the general least squares algorithms, the linearization errors of sub-spaces, and the cooperation and competition mechanism. The simulation results have shown the efficiency of the suggested algorithm.

    参考文献
    相似文献
    引证文献
引用本文

胡德文,王正志,周宗潭.基于神经网络的非线性控制系统自组织辨识[J].国防科技大学学报,1998,20(2):85-90.
Hu Dewen, Wang Zhengzhi, Zhou Zhongtan. Self-organizing Identification of Nonlinear Control Systems Based on Neural Networks[J]. Journal of National University of Defense Technology,1998,20(2):85-90.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1998-02-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-01-03
  • 出版日期:
文章二维码