基于动力学模型的柔性加工设备机电系统状态监测与故障预警
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国防预研基金资助项目


Condition Monitoring and Fault Prediction of Mechanical-Electronic Systems of Flexible Machining Devices Based on Dynamics Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在建立的加工设备机电系统精确动力学模型及对模型参数实时辨识的基础上[1], 建立柔性加工设备机电系统的状态监测模型, 包括BAYES故障检测、突发故障检测及故障分析与定位等; 同时利用Kullback信息距离和多层递阶AR模型实现系统的状态与故障预警。在加工设备上的实验表明模型可行有效, 它能排除柔性多变工况、时变性及随机干扰对监测与预警功能的影响, 提高其鲁棒性和自适应能力。

    Abstract:

    Based on the dynamics models and their identification of mechanical-electronic systems of flexible machining devices, we have built up a real condition monitoring model which includes BAYES fault detection, abrupt fault detection and fault analysis&location. Utilizing the Kullback information distance and the multilevel hierarchical AR model, we have realized the prediction and alarming of faults of flexible machining devices. The experiments on the JCS-020 Machine Center have indicated the models are feasible and valid. They can properly eliminate the influence of the changeful machining mode and process, the factors of time-varying and random disturbances on the condition monitoring, fault diagnosis and prediction, and greatly improve robustness and adaptability of monitoring and diagnosis in the FMS environments.

    参考文献
    相似文献
    引证文献
引用本文

邱静,温熙森,胡政.基于动力学模型的柔性加工设备机电系统状态监测与故障预警[J].国防科技大学学报,1998,20(3):84-88.
Qiu Jing, Wen Xisen, Hu zheng. Condition Monitoring and Fault Prediction of Mechanical-Electronic Systems of Flexible Machining Devices Based on Dynamics Model[J]. Journal of National University of Defense Technology,1998,20(3):84-88.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1997-09-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-01-03
  • 出版日期:
文章二维码