采用神经网络技术降低机电设备BIT虚警
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家部委基金项目资助


Decreasing False Alarm of Mechantronics Equipment Built-in Test Based on Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    机电设备BIT的突出问题是虚警率高, 重要原因之一是BIT系统传感器通路故障。本文选取神经网络技术进行传感器通路故障诊断, 剖析某大型船舶动力装置机电设备BIT系统中传感器通路的故障机理和类型, 得到其故障样本数据, 经过神经网络学习训练后对实际系统进行故障诊断和识别, 实验结果表明该方法简洁、有效, 能够有效地诊断故障并识别出故障类型, 具有实用价值。

    Abstract:

    The significant problem of mechantronics equipment built-in test (MEBIT) is its high false alarm rate. One of the important causes is its sensor channel's fault of BIT system. The method of neural network is adopted for the sensor channel fault diagnosis. The fault mechanism and types of sensor channels of MEBIT in a large ship power engine and the fault samples are obtained. After the training of neural network, the actual system's faults are diagnosed and identified. The experimental results show that the neural network can diagnose the faults and identify their types. The method is compact, effective and of practical value.

    参考文献
    相似文献
    引证文献
引用本文

徐永成,陶利民,温熙森,等.采用神经网络技术降低机电设备BIT虚警[J].国防科技大学学报,1999,21(4):96-99.
Xu Yongcheng, Tao Liming, Wen Xisen, et al. Decreasing False Alarm of Mechantronics Equipment Built-in Test Based on Neural Network[J]. Journal of National University of Defense Technology,1999,21(4):96-99.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1999-01-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-11-18
  • 出版日期:
文章二维码