非圆链轮分度线的样条拟合
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Cubic Rational Bezier Spline Curve With A Given Set of Tangents of Chain Wheel
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    非圆链传动中, 两链轮分度线为非圆形, 该曲线数学表达式是一个非线性函数方程组, 严格求解这一函数方程组似乎毫无希望, 但是依据动力学的方法可以构造此曲线的切线系, 即一切线多边形。从而将这一问题转化为求与切线多边形每条边相切的逼近曲线。

    Abstract:

    The mathematical description of chain-wheel drives with two fixed non-cricular wheels, a transmission chain of constant length and g give non-costant velocity-ratio leads to a system of nonlinear functional equations. It seems impossible to solve this equations, but we can construct a set of tangents of thesse wheels by kinematic methods. The desired curve can be approximated by constructing spline curve. This paper considers piecewise raional cubic Bezier curve which has all these tangents as tangents, the curve is G2-continuous and shape-preserving.

    参考文献
    相似文献
    引证文献
引用本文

闵小平.非圆链轮分度线的样条拟合[J].国防科技大学学报,1999,21(4):122-124.
Ming Xiaoping. Cubic Rational Bezier Spline Curve With A Given Set of Tangents of Chain Wheel[J]. Journal of National University of Defense Technology,1999,21(4):122-124.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1998-12-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-11-18
  • 出版日期:
文章二维码