平面 NURBS 曲线的椭圆弧自适应逼近
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省自然科学基金资助项目(99YJJ2005); 国家杰出青年基金资助项目(59725511)


Auto-adaptable Approximation of Planar NURBS Curve with Ellipse Arc
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    给出了用椭圆弧及双椭圆弧自适应逼近平面NURBS曲线的算法。算法所得到的椭圆样条能够G1连续, 双椭圆样条还能够保形。与现行的圆弧逼近算法相比, 本算法不需要求解非线性方程组, 而是由给定的插补误差自动计算参数增量, 得到椭圆曲线的特征点, 还可以将误差控制在预期的范围之内; 与现行的直线插补方法相比, 不需要额外的时间和空间, 也适用于CNC环境。本算法在腔体加工、二维轮廓加工等方面有特别的实用价值。

    Abstract:

    An algorithm to approximate a planar NURBS curve by ellipse-arc and bi-ellipse-arc is presented. The piecewise ellipse-arc spline calculated by this algorithm is G1 continuous, and shape preserving. Compared with the present arc-approximation, this algorithm does not need equation-solving, and enable an automatic choice of parameter increment responding to the given interpolation tolerance in calculation of the character points of ellipse-arc. The algorithm also has advantage in approximation error control, which can control the approximation error to an expected one. Compared with present line-approximation mode, this algorithm, which needs no extra time and space in calculation, is applicable to CNC environment. The algorithm is specially valuable in cavity and contour machining.

    参考文献
    相似文献
    引证文献
引用本文

王兴波,李圣怡.平面 NURBS 曲线的椭圆弧自适应逼近[J].国防科技大学学报,2000,22(4):23-26.
WANG Xingbo, LI Shengyi. Auto-adaptable Approximation of Planar NURBS Curve with Ellipse Arc[J]. Journal of National University of Defense Technology,2000,22(4):23-26.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:1999-12-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-11-18
  • 出版日期:
文章二维码