微分算子插值样条解析性质的一种新证法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A New Proving Method of the Continuous Properties of Interpolating Splines of Differential Operators
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    讨论带线性泛函约束的微分算子插值样条,在空间 Wm2中给出了由约束泛函和微分算子构造再生核的普遍方法,利用微分算子及其共轭微分算子零空间基底之间的关系得到了微分算子插值样条解析性质新的推导方法。

    Abstract:

    The interpolating splines of differential operators with constrained functionals are discussed. A general method for constructing the reproducing kernel is presented, this reproducing kernel is determined by the constrained functionals and differential operators. The structual and continuous properties of the splines are derived by new methods, which dependent on the relations between the bases for the null spaces of the differential operators and their adjoint operators.

    参考文献
    相似文献
    引证文献
引用本文

张新建,童丽,唐善桂.微分算子插值样条解析性质的一种新证法[J].国防科技大学学报,2001,23(1):89-92 ,96.
ZHANG Xinjian, TONG Li, TANG Shangui. A New Proving Method of the Continuous Properties of Interpolating Splines of Differential Operators[J]. Journal of National University of Defense Technology,2001,23(1):89-92 ,96.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2000-07-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-08-21
  • 出版日期:
文章二维码