一种面向个性化服务的无需反例集的用户建模方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A User Modeling Method withoutNegative Examples for Personalized Services
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着WWW信息的快速增长,查找用户感兴趣的信息变得越来越耗时耗力。个性化服务能为不同的用户提供有针对性的服务,日益受到研究者的重视。用户建模是实现个性化服务的关键技术。传统的需要正、反例集作为训练例集的用户建模方法容易干扰用户的正常浏览,或者由于推断失误而引入噪声。基于遗传算法和k近邻方法提出了一种无需反例集的用户建模方法,该方法被应用于个性化信息过滤中。实验结果表明,基于无需反例集的用户建模方法的信息过滤算法可以达到73.91%的过滤率和94.44%的过滤精度。无需反例集的用户建模方法是一种可行、高效的用户建模方法。

    Abstract:

    With the exponential growth of World Wide Web, it becomes more and more time and energy consuming for users to find what they're interested in. It leads to a clear demand for personalized services, which can provide different users with different services User modeling is the key technology in implementing personalized services. Conventional user modeling methods with both positive and negative examples will either interfere users' normal browsing or bring in noises. A user modeling method without negative examples is presented. A hybrid of genetic algorithms and kNN classifier are utilized to search the words describing users' interests. The method is applied in personalized information filtering. The experiments show that the filtering ratio and precision can be 73.91% and 94.44% respectively, which demonstrates that our user modeling method is feasible and efficient.

    参考文献
    相似文献
    引证文献
引用本文

应晓敏,刘明,窦文华.一种面向个性化服务的无需反例集的用户建模方法[J].国防科技大学学报,2002,24(3):67-71.
YING Xiaomin, LIU Ming, DOU Wenhua. A User Modeling Method withoutNegative Examples for Personalized Services[J]. Journal of National University of Defense Technology,2002,24(3):67-71.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2001-12-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-08-21
  • 出版日期:
文章二维码