基于隐马尔可夫模型的IDS程序行为异常检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

北京首信集团重大科研项目(020015)


Anomaly Detection of the Program Behaviors for IDS Based onHidden Markov Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种新的基于隐马尔可夫模型的程序行为异常检测方法,此方法利用系统调用序列,并基于隐马尔可夫模型来描述程序行为,根据程序行为模式的出现频率对其进行分类,并将行为模式类型同隐马尔可夫模型的状态联系在一起。由于各状态对应的观测值集合互不相交,模型训练中采用了运算量较小的序列匹配方法,与传统的Baum-Welch算法相比,训练时间有较大幅度的降低。考虑到模型中状态的特殊含义以及程序行为的特点,将加窗平滑后的状态序列出现概率作为判决依据。实验表明,此方法具有很高的检测准确性,其检测效率也优于同类方法。

    Abstract:

    A new method for anomaly detection of the program behaviors based on hidden Markov models is presented. The method uses system calls to represent the behavior profiles of programs based on hidden Markov models. The behavior patterns of programs are classified according to their frequency distributions, and the states of the hidden Markov models are associated with the classes of the behavior patterns. Because the collections of observations corresponding to different states are mutually disjoint, the models can be trained with a sequence matching algorithm which requires lower computational complexity and less computation time than the classical Baum-Welch algorithm. A decision rule based on the probabilities of short state sequences is adopted while the particularity of the model states is taken into account. The performance of the method is tested by computer simulation. The results show it maintains higher detection accuracy and efficiency than other alternative approaches.

    参考文献
    相似文献
    引证文献
引用本文

孙宏伟,田新广,邹涛,等.基于隐马尔可夫模型的IDS程序行为异常检测[J].国防科技大学学报,2003,25(5):63-67.
SUN Hongwei, TIAN Xinguang, ZOU Tao, et al. Anomaly Detection of the Program Behaviors for IDS Based onHidden Markov Models[J]. Journal of National University of Defense Technology,2003,25(5):63-67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-01-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-06-14
  • 出版日期:
文章二维码