规整化SAR图像特征提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Regularized SAR Image Feature Extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    SAR成像算法通常都基于FFT运算,图像分辨率要受到瑞利限的制约。为了提高图像分辨率,目前常用的SAR/ISAR超分辨成像算法大多借助于现代谱估计技术。从解方程的角度考虑,认为有限长数据的高分辨率谱估计是一个欠定方程问题,估计的结果存在“病态”性。在Bayes估计准则下,把信号谱的先验概率密度作为规整项包含进信号频谱的最大后验概率估计中,提高谱估计的分辨率。将这种方法用于SAR图像峰值特征提取,提高了图像分辨率。

    Abstract:

    SAR images generated on the basis of FFT suffer the poor resolution. In super-resolution algorithms of SAR/ISAR image the modern spectral estimation technique is usually used, such as Minimum Variance Method (MVM), AR model, eigen-vector, MUSIC and maximum entropy, to improve the resolution of the image. High-resolution spectral estimation of finite length sample is considered an underdetermined problem. In the framework of Bayesian criteria, a prior probability density function (pdf) of the spectra is included as a regular term in the cost function for MAP estimation. To improve the efficiency of calculation in 2-D case, fast algorithm is derived. The better resolution is achieved by the method while the method is applied to SAR image peak feature extraction.

    参考文献
    相似文献
    引证文献
引用本文

王岩,梁甸农,郭汉伟.规整化SAR图像特征提取. Regularized SAR Image Feature Extraction[J].国防科技大学学报,2003,25(6):72-75.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2003-04-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-06-14
  • 出版日期:
文章二维码