有耗媒质中目标体散射特性的TSNU-PSTD模拟
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Simulations of Scattering by the Objects Buried in LossyMedia Using TSNU-PSTD Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    结合PML边界条件的傅立叶时域伪谱(PSTD)算法已被广泛用于模拟电磁波传播和目标散射,但传统的PSTD方法在每个坐标方向上需要均匀分布的空间坐标网格点,因而不能够很好地模拟曲面目标和与网格空间尺寸不一致的目标,基于变空间非均匀网格的PSTD(TSNU-PSTD)方法可以很好地克服这些不足。将CFS-PML边界条件应用在PSTD算法中,并将其与TSNU-PSTD方法相结合模拟了大范围有耗媒质中介质体目标的电磁散射,部分计算结果与FDTD计算结果进行了比较。仿真结果表明,TSNU-PSTD算法只需平均每波长分成3个网格就可以得到令人满意的计算结果,可高效地分析大范围有耗媒质中曲面形状目标体的散射特性。

    Abstract:

    A technique based on the combination of Fourier pseudospectral time-domain method (PSTD) and PML absorbing boundary conditions is widely used to simulate the scattering and propagation problems. However, one of the known disadvantages of this method is that it requires a uniformly distributed spatial grid-set along each orthogonal direction. But its accuracy is lower when applied to the objects involving the curved boundary or thein dimensions are not commensurate with the cell size. The PSTD method involving space transformations (TSNU-PSTD) alleviates this limitation. The CFS-PML is implemented in the PSTD and the TSNU-PSTD algorithm combined with the CFS-PML has been applied to model ground-penetrating radar (GPR) application involving objects in a large-scale lossy half space, and the results are compared with the FDTD. Numerical simulations show that it can achieve a satisfactory result with a grid density of only 3.0 nodes per minimum wavelength, and can simulate the scattering of curved objects in large-scale lossy media efficaciously

    参考文献
    相似文献
    引证文献
引用本文

姜永金,刘立业,杨虎,等.有耗媒质中目标体散射特性的TSNU-PSTD模拟[J].国防科技大学学报,2005,27(6):88-92.
JIANG Yongjin, LIU Liye, YANG Hu, et al. Simulations of Scattering by the Objects Buried in LossyMedia Using TSNU-PSTD Algorithm[J]. Journal of National University of Defense Technology,2005,27(6):88-92.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-09-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-04-10
  • 出版日期:
文章二维码