涡轮泵故障检测的频段能量比SOM算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863高技术研究发展计划资助项目(2005AA722070);国家自然科学基金资助项目(50375153)


Frequency-band-energy-ration-based SOM Algorithmfor Turbopump Fault Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决缺少故障样本情况下的涡轮泵健康状态判别问题,分析了涡轮泵振动信号的频谱,提取了频段能量比作为其故障检测特征,并讨论了自组织映射的竞争学习原理及聚类结果的U-矩阵表示,提出了一种基于频段能量比的自组织映射故障检测算法,并实现了该算法最佳匹配神经元的选择和权重向量的自适应更新。通过某型液体火箭发动机历史试车数据的验证,结果表明,健康涡轮泵数据利用该算法聚类时仅存在一个类别,相邻神经元距离小于0.1;反之,故障涡轮泵数据利用该算法聚类时明显存在两个或多个类别,且相邻神经元的最大距离大于0.1。因此,基于频段能量比的SOM算法能有效地判别涡轮泵的健康状况。

    Abstract:

    In order to detect the turbopump fault short of fault samples, the spectrums of turbopump vibration signals were analyzed, and the frequency band energy ratio was selected as the fault feature of those signals. After SOM competitive learning theory and U matrix description of clustering results were discussed, the frequency-band-energy-ratio-based SOM algorithm for turbopump fault detection is presented, and the selection of the best matching unit (BMU) and the adaptive upgrade of their weight vectors are also realized in this algorithm. With a liquid rocket engine (LRE) historical test data, this algorithm is validated. These results show that there is only one class when the algorithm is used to healthy turbopump vibration data, and the distance between the neighboring neuron is less than 0.1; while there are two or more classes when the algorithm is used for faulty turbopump vibration data, and the distance between the neighboring neuron is greater than 0.1. Therefore the algorithm can effectively detect the turbopump fault.

    参考文献
    相似文献
    引证文献
引用本文

胡茑庆,邱忠,谢光军,等.涡轮泵故障检测的频段能量比SOM算法[J].国防科技大学学报,2005,27(6):93-96.
HU Niaoqing, QIU Zhong, XIE Guangjun, et al. Frequency-band-energy-ration-based SOM Algorithmfor Turbopump Fault Detection[J]. Journal of National University of Defense Technology,2005,27(6):93-96.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-07-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-04-10
  • 出版日期:
文章二维码