支持向量机规则提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Rule Extraction from Support Vector Machines
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    支持向量机是一种黑箱模型,其学习到的知识蕴含在决策函数中,不仅影响了用户对利用支持向量机技术构建智能系统的信心,还阻碍了支持向量机技术在数据挖掘领域的应用。由于对支持向量机规则提取进行研究有助于解决上述问题,因此该领域正成为机器学习和智能计算界的研究热点。分析了具有代表性的支持向量机规则提取算法,并提出该领域未来的研究重点。

    Abstract:

    Support vector machines is a blackbox model whose knowledge is concealed in the decision function. This has not only weakened the confidence of users in building intelligent systems using support vector machines techniques, but also hindered the application of support vector machines to data mining. Since extracting rules from support vector machines help to solve those problems, this area is becoming a hot topic in both machine learning and intelligent computing communities. In this paper, the typical algorithms for rule extraction from support vector machines are introduced, and some issues valuable for future exploration in this area are indicated.

    参考文献
    相似文献
    引证文献
引用本文

王强,沈永平,陈英武.支持向量机规则提取[J].国防科技大学学报,2006,28(2):106-110.
WANG Qiang, SHEN Yongping, CHEN Yingwu. Rule Extraction from Support Vector Machines[J]. Journal of National University of Defense Technology,2006,28(2):106-110.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-09-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-03-14
  • 出版日期:
文章二维码