液体火箭发动机基于神经网络的实时故障检测算法实现
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家863高技术资助项目(2005AA7XX070);教育部“新世纪优秀人才支持计划”项目(NCET-06-09278)


Implementation of Real-time Fault Detection Algorithms Basedon Neural Network for Liquid Propellant Rocket Engines
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以某大型液体火箭发动机为研究对象,针对其启动和稳态工作过程,利用Matlab和Lab Windows/CVI等编程工具,基于神经网络技术,开发实现了其地面试车过程实时故障检测的BP(Back Propagation)和RBF(Radial Basis Function)算法。多次试车数据离线检验和实时在线考核结果均表明该方法能够及时、有效地检测出发动机工作过程中的故障,没有出现误报警和漏报警,并能够很好地满足现场试车的实时性和鲁棒性等要求。

    Abstract:

    Based on the back propagation and radial basis function neural network, and using the tool of Matlab and Lab Windows/CVI, the real-time fault detection algorithms for the start-up and main-stage process of a certain liquid-propellant rocket engine in ground tests are developed in this paper. The algorithms realized were verified with a great deal of historical test-data and also validated in the practical ground tests of the engine. The results show that the algorithms not only can detect the fault of the engine in time and efficiently without false alarm and missing alarm, but also can meet the real-time ability and robustness requirement.

    参考文献
    相似文献
    引证文献
引用本文

黄强,吴建军,刘洪刚,等.液体火箭发动机基于神经网络的实时故障检测算法实现[J].国防科技大学学报,2007,29(5):10-13.
HUANG Qiang, WU Jianjun, LIU Honggang, et al. Implementation of Real-time Fault Detection Algorithms Basedon Neural Network for Liquid Propellant Rocket Engines[J]. Journal of National University of Defense Technology,2007,29(5):10-13.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-01-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-02-28
  • 出版日期:
文章二维码