弹性BP神经网络消除轮速传感器误差方法的研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Attenuating the Wheel Speed Sensor ErrorsBased on Resilient BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    汽车轮速是汽车运动状态参数的主要信息源,是控制系统的核心,其精度直接影响这些系统的性能。为了提高轮速的精度,降低传感器的研制成本,提出了一种基于弹性BP神经网络的误差分析方法消除轮速传感器误差。将改进的BP神经网络——弹性BP神经网络用于误差分析,并提出误差匹配的算法。理论和仿真结果表明,该方法使绝对误差达到2×10-4 rad,能够有效地消除传感器误差,提高轮速信号的精度。

    Abstract:

    Being the main source of vehicles' movement state parameters, wheel speed is central for control systems and its accuracy affects their performance. In order to attenuate the wheel speed sensor errors and reduce the research and manufacture cost, an error estimation method based on resilient back propagation (BP) is presented. The improved resilient BP neural network is applied to estimate the sensor errors. Matching algorithm is illustrated to realize the corresponding errors. Theoretical analysis and simulation results show that the proposed method can make the error less than 2×10-4 rad, so it can effectively attenuate the sensor errors and improve the accuracy of the wheel speed signal.

    参考文献
    相似文献
    引证文献
引用本文

张玘,谢秀芬,刘国福,等.弹性BP神经网络消除轮速传感器误差方法的研究[J].国防科技大学学报,2008,30(3):131-135.
ZHANG Qi, XIE Xiufen, LIU Guofu, et al. Research on Attenuating the Wheel Speed Sensor ErrorsBased on Resilient BP Neural Network[J]. Journal of National University of Defense Technology,2008,30(3):131-135.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2007-11-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-12-07
  • 出版日期:
文章二维码