基于粒子群优化的稀疏序列Bayes反卷积方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家部委资助项目


Bayesian Deconvolution of Sparse Spike Trains by ParticleSwarm Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在地下目标低频声波探测中,由于探测信号的混叠,难以判读反射目标的空间位置。应用信号处理方法求解时,目标信号是稀疏序列,求解方程是病态的。运用Bayes反卷积方法修正其病态性,并采用优化的粒子群算法求解,提高了系统的探测分辨率,同时降低了计算量。实际应用表明,该方法是有效的。

    Abstract:

    Because of the aliasing of the received waves and the sparse structure of the reflection signals, the temporal resolution is not good in acoustic detection of buried objects with low frequency waves. Thus, the problem of resolving the reflection position is notoriously ill-posed. In this paper, a maximum a posteriori estimator is presented to regularize the ill-posed problem, and an algorithm of particle swarm optimization is proposed to improve temporal resolution and reduce execution time. The results from research show that the method is efficient for using practical data in detecting objects buried in sand.

    参考文献
    相似文献
    引证文献
引用本文

徐慧峰,钱彦岭,温激鸿,等.基于粒子群优化的稀疏序列Bayes反卷积方法研究[J].国防科技大学学报,2008,30(5):103-107.
XU Huifeng, QIAN Yanling, WEN Jihong, et al. Bayesian Deconvolution of Sparse Spike Trains by ParticleSwarm Optimization[J]. Journal of National University of Defense Technology,2008,30(5):103-107.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-02-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-03-11
  • 出版日期:
文章二维码