基于相对轨道根数的几种大椭圆轨道编队构形
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国防科技大学研究生创新资助项目(080104)


Several Relative Formation of Spacecrafts Flight in HighlyElliptic Orbits Based on Relative Orbit Elements
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大椭圆轨道航天器在较长轨道周期内运行于远地点上空,可以实现高纬度地区长时间的通信和预警,具有重要的军事应用价值。大椭圆轨道编队飞行可实现空间磁场探测、信息干扰等特殊空间任务,有必要研究大椭圆轨道的多航天器协同运动理论。完善了以相对轨道根数为变量的大椭圆编队相对运动模型,分析了模型的误差。推导并证明了几种特殊的伴随星相对运动轨迹:直线、圆、椭圆,给出了两颗以及三颗卫星形成特殊编队构形的条件。仿真结果表明,在二体条件下,对近距离大椭圆轨道航天器的相对运动,编队具有较高的精度。论文研究结论可为大椭圆轨道航天器编队构形初步设计提供理论指导。

    Abstract:

    The spacecraft on highly elliptic orbit flies over their apogee in the most part of one period. So this kind of orbit can be used to realize long term communication and airborne early warning for high latitude areas, which is significant if applied in military. The kinematics of multi-spacecraft formation is required to deal with space missions such as the exploration of space magnetic fields and the information interference. Formulations of the relative motion on highly elliptic orbits are developed by kinematic method which takes the relative orbit elements as the variable, and then the precision of the formation is analyzed. Based on the formation, several special relative formations including the linear circular elliptical and isosceles triangle ones are discovered, and the conditions to form these formations are presented. Under the circumstance of two-body, the results from simulation show that the more close of the spacecrafts, the more accurate of the formations.

    参考文献
    相似文献
    引证文献
引用本文

王功波,郗晓宁.基于相对轨道根数的几种大椭圆轨道编队构形[J].国防科技大学学报,2009,31(2):10-14.
WANG Gongbo, XI Xiaoning. Several Relative Formation of Spacecrafts Flight in HighlyElliptic Orbits Based on Relative Orbit Elements[J]. Journal of National University of Defense Technology,2009,31(2):10-14.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-10-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-01-31
  • 出版日期:
文章二维码