内置谓词函数依赖及其推理规则
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(60902094,60903225,70701038,60903206)


Functional Dependencies with Built-in Predicates andIts Axiomatization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究内置谓词函数依赖及其推理规则。首先提出内置谓词函数依赖,定义了内置谓词函数依赖的语法和语义;其次提出属性-约束集闭包概念,提出计算属性-约束集闭包的算法,判断内置谓词函数依赖逻辑蕴涵;然后提出内置谓词函数依赖的推理规则集A,证明推理规则集A是可靠且完备的,用于内置谓词函数依赖蕴涵分析的形式化证明;最后讨论了内置谓词函数依赖的应用。

    Abstract:

    The increasing demand for data quality technology has motivated revisions of classical dependencies to capture more inconsistencies in real-life data. A class of integrity constraints, referred to as functional dependencies with built-in predicates (PFDs), is proposed for relational databases and their axiomatization is investigated. In contrast to traditional functional dependencies (FDs) developed mainly for schema design, PFDs generalize the notions of FDs to apply to subsets of relations specified by constraints in the context of interpreted data, and aim at capturing the consistency of data by enforcing bindings of ranges of semantically related values. For the implication analysis of PFDs, which is to decide whether or not a set of PFDs entails another PFD, we provide an inference system analogous to Armstrong's axioms for FDs, and prove the soundness and completeness of the inference system. This work is a step towards a practical constraint-based method for improving data quality since inconsistencies and errors in databases often emerge as violations of integrity constraints.

    参考文献
    相似文献
    引证文献
引用本文

胡艳丽,张维明,肖卫东,等.内置谓词函数依赖及其推理规则[J].国防科技大学学报,2009,31(5):58-63.
HU Yanli, ZHANG Weiming, XIAO Weidong, et al. Functional Dependencies with Built-in Predicates andIts Axiomatization[J]. Journal of National University of Defense Technology,2009,31(5):58-63.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-03-23
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-11-08
  • 出版日期:
文章二维码