基于fMRI的静息状态脑功能复杂网络分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家部委资助项目(2007CB311001);国家自然科学基金资助项目(60835005,60771062,90820304)


A Functional Complex Network Analysis in the RestingBrain Based on fMRI
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分析静息状态下人脑中不同区域之间的功能连接模式对研究静息状态下人脑正常功能活动具有重要意义。基于复杂网络理论对脑功能网络进行建模,考察静息状态脑功能网络的结构和拓扑特性。结果显示,网络具有小世界性质和无标度特性。进一步引入一种概率混合模型分析网络社团结构,得到的10个子网络中包含视觉系统、听觉系统、运动系统、默认网络以及与执行和工作记忆相关的脑区。推测出静息状态脑功能网络是由这些相对独立又彼此关联的子网络组成,其中楔前叶和扣带回作为网络的关键节点,在信息调度和传递中占据重要地位。

    Abstract:

    It is important to understand the functional activity of the human brain during the resting state by analyzing the functional connectivity between the regions. The resting-state brain functional network was constructed based on the complex network theory. The result of analyzing the structure and topology of network showed that the resting-state brain functional network was a sparse and scale-free small-world network. Furthermore, a probabilistic mixture models was introduced to detect the community structure, which revealed 10 sub-networks underlying the network, including the visual system, auditory system, motor system, and default-mode network, as well as the brain regions associated with the executive and working memory function. Our findings suggested that the resting-state functional network of human brain was composed of these relatively independent and overlapping sub-networks, and the precuneus and cingulate gyrus played important roles in dispatching and transferring information of network.

    参考文献
    相似文献
    引证文献
引用本文

柯铭,沈辉,胡德文.基于fMRI的静息状态脑功能复杂网络分析[J].国防科技大学学报,2010,32(1):147-151.
KE Ming, SHEN Hui, HU Dewen. A Functional Complex Network Analysis in the RestingBrain Based on fMRI[J]. Journal of National University of Defense Technology,2010,32(1):147-151.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-07-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-19
  • 出版日期:
文章二维码