求解非对称线性方程组的 s-BiCR算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家部委基金资助项目(9140C8103050601)


The s-BiCR Algorithm to Solve Nonsymmetric Linear Systems
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在BiCR算法的基础上,提出了求解非对称线性方程组的 s-BiCR算法。首先,给出了 s-BiCR的基本计算框架,介绍了算法基本原理及参数求解方法;其次,通过分析 s-BiCR中剩余向量与方向向量序列的基本性质,推导出减少参数求解计算量的方法,并在此基础上提出了一种更为高效的 s-BiCR算法;最后,证明了 s-BiCR的正确性,即在第i步产生的近似解与BiCR第is步产生的近似解是一致的,同时,通过性能分析发现,s-BiCR的同步通信次数与访存次数明显少于BiCR,说明该算法具有很好的并行特性和数据本地性。大量实验验证了 s-BiCR的高效性和正确性。

    Abstract:

    Based on the BiCR algorithm, s-BiCR algorithm is proposed to solve nonsymmetric linear systems. Firstly, the basic computation frame for the s-BiCR was given by introducing the fundamental principle in the new method and the solution approach to the parameters. Next, according to the analysis of the characters of the sequences of residual vectors and direction vectors, an approach is deduced to reduce computational volume for the parameters so that a more effective advanceds-BiCR is designed. Finally, the correctness ofs-BiCR is proved, that is, the ith approximate solution froms-BiCR is equal to the isth approximate solution from BiCR. In addition, by performance analysis, the number of both synchronous communication and accessing memory fors-BiCR is less than the one for BiCR so the algorithm here has better parallel feature and data locality. The effectivity and validity ofs-BiCR have been confirmed by experiments.

    参考文献
    相似文献
    引证文献
引用本文

仲妍,骆志刚,吴枫.求解非对称线性方程组的 s-BiCR算法[J].国防科技大学学报,2010,32(2):61-67.
ZHONG Yan, LUO Zhigang, WU Feng. The s-BiCR Algorithm to Solve Nonsymmetric Linear Systems[J]. Journal of National University of Defense Technology,2010,32(2):61-67.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-11-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-19
  • 出版日期:
文章二维码