基于抗差Kalman滤波的航空发动机测试数据预处理技术
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Technology of Aeroengine Testing Data PreprocessingBased on Robust Kalman Filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对使用标准Kalman滤波算法不能准确处理包含粗差的航空发动机测试数据的问题,在分析标准Kalman滤波算法准则和观测误差对滤波估计结果影响的基础上,采用动态调整观测信息在滤波估计结果中权重的方法,给出了基于抗差M估计理论的抗差Kalman滤波准则和递推公式。对不同的发动机测试数据分别采取序列滤波的方法,减少了运算量。基于常加速度模型,建立了测量参数的状态空间方程和测量方程。以包含粗差的某型涡扇发动机稳定工作过程的模拟测量数据为例,采用所设计的抗差Kalman滤波器对其进行预处理,与标准Kalman滤波算法处理的结果对比表明,在模型误差一定的情况下,抗差Kalman滤波算法具有更好的估计精度。

    Abstract:

    The standard Kalman filter algorithm cannot accurately preprocess the measured data of aeroengine with exceptional errors. The principle of standard Kalman filter and the impact of test errors to the filter estimate results were analysed, and the method of dynamically adjusting the weight of observation information in the filter estimate result was introduced. Then, based on M-estimation theory, the Robust Kalman filter principle and the recursion formula were presented. The state-space equations and observation equations of the measured parameters were established in terms of CA(Constant Acceleration)model. In order to decrease the calculation consumption, the sequence filter was applied separately to process the different sensed data. Furthermore, the preprocessing to the simulation sensed data of a given turbofan engine's steady operation was carried out as an example, using the given Robust Kalman filter. The calculation results, compared with standard Kalman filter, show that the designed Robust Kalman filter has better estimate precision with a given model error.

    参考文献
    相似文献
    引证文献
引用本文

尹大伟,廖瑛,王雷,等.基于抗差Kalman滤波的航空发动机测试数据预处理技术[J].国防科技大学学报,2010,32(4):55-60.
YIN Dawei, LIAO Ying, WANG Lei, et al. Technology of Aeroengine Testing Data PreprocessingBased on Robust Kalman Filter[J]. Journal of National University of Defense Technology,2010,32(4):55-60.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-05-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-06
  • 出版日期:
文章二维码