LRE试车数据挖掘中基于最大散度差的模糊聚类分析方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(50675219);湖南省杰出青年科学基金资助项目(08JJ1088)


Fuzzy Cluster Analysis Based on Maximum ScatterDifference in LRE Test Data Mining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在对液体火箭发动机试车数据进行聚类分析时,为解决故障数据样本与正常样本类间差异不大的问题,引入最大散度差准则,提出基于最大散度差的聚类算法 MSD-CA。该算法以散度度量样本间的相似性,使样本的类内散度最小化和类间散度最大化同时进行。在此基础上,应用模糊理论对最大散度差准则进行模糊化,提出基于最大散度差的模糊聚类算法MSD-FCA,用于对试车样本进行“软划分”,以提高聚类的正确性。实验结果证明了MSD-FCA的有效性。

    Abstract:

    In the clustering analysis of test data of liquid rocket engine, in order to solve the problem that there is insignificant difference between fault sample and normal sample, the maximum scatter difference criterion was introduced and the maximum scatter difference based clustering algorithm (MSD-CA) was presented. In MSD-CA, the similarity of samples was measured by divergence, and the minimizing of the within-class divergence and maximizing of the between-class divergence were processed together. After that, fuzzy theory was introduced to maximum scatter difference criterion, and the maximum scatter difference based fuzzy clustering algorithm (MSD-FCA) was presented and used to do “soft partition” for test data to improve the precision of cluster. The method is verified with experimental results.

    参考文献
    相似文献
    引证文献
引用本文

王珉,胡茑庆,秦国军. LRE试车数据挖掘中基于最大散度差的模糊聚类分析方法[J].国防科技大学学报,2011,33(3):164-168.
WANG Min, HU Niaoqing, Qin Guojun. Fuzzy Cluster Analysis Based on Maximum ScatterDifference in LRE Test Data Mining[J]. Journal of National University of Defense Technology,2011,33(3):164-168.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-09-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-13
  • 出版日期:
文章二维码