基于种群分类的变尺度免疫克隆选择算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(50975280,61004094);教育部新世纪优秀人才支持计划资助项目(NCET-08-0149)


Mutative Scale Immune Clonal Selection AlgorithmBased on Multi-population
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于种群分类的变尺度免疫克隆选择算法。该算法通过对目标函数进行非线性尺度变换,突出了全局最优解的优势地位;建立记忆子群实现了种群代际进化信息的交换;依据亲和度将抗体分为精英子群、普通子群、劣等子群,并对其分别执行自适应高斯变异、均匀变异和消亡更新等策略,增强了算法的局部和全局搜索能力。引入小生境技术提高了抗体分布的多样性,进而克服了算法的早熟。采用经典测试函数和星载天线结构优化问题对算法进行了测试,测试结果表明本算法寻优能力较经典克隆选择算法和标准遗传算法有较大改善,且计算复杂度并无显著增加。

    Abstract:

    Mutative Scale Immune Clonal Selection Algorithm (MSICSA) based on Multi-population is proposed. In the algorithm, the dominant position of global optimal solution was highlighted by the nonlinear scale transformation of objective function. Memory sub-population was extracted to exchange information between populations. Antibody population was divided into elite, normal and inferior sub-population. To enhance local and global search capabilities of MSICSA, adaptive Gaussian and uniform mutation were applied to elite and normal sub-population respectively and the inferior antibody was extinguished and replaced by new ones. By introducing the niche technology to increase the diversity of population distribution, the algorithm can prevent premature. Test functions and a space antenna optimization were tested. The results show that the optimization capability of MSICSA is more advanced than CLONALG and SGA, and the computational complexity is reduced.

    参考文献
    相似文献
    引证文献
引用本文

郭忠全,王振国,颜力.基于种群分类的变尺度免疫克隆选择算法[J].国防科技大学学报,2011,33(5):36-40.
GUO Zhongquan, WANG Zhenguo, YAN Li. Mutative Scale Immune Clonal Selection AlgorithmBased on Multi-population[J]. Journal of National University of Defense Technology,2011,33(5):36-40.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-03-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-08-28
  • 出版日期:
文章二维码