A novel structured dictionary training algorithm is proposed for double sparse image representation. Based on the double sparse image representation model proposed by Rubinstein, the zero-tree structure of wavelet coefficients was introduced, and the new dictionary atoms were constructed by linear combination of wavelet bases in all high-frequency bands of same orientation across different scales. The linear combination coefficients were learned via K-SVD. The image decomposition and reconstruction algorithm was proposed based on the learned dictionary. The M-term approximation and compression of remote sensing images both proved the better effects of the proposed structured dictionary than the existing dictionaries.
参考文献
相似文献
引证文献
引用本文
梁锐华,成礼智.基于小波域字典学习方法的图像双重稀疏表示[J].国防科技大学学报,2012,34(4):126-131. LIANG Ruihua, CHENG Lizhi. Double sparse image representation via learning dictionaries in wavelet domain[J]. Journal of National University of Defense Technology,2012,34(4):126-131.